
Intelligent and Automated Software Testing Methods
Classification

Seyed Reza Shahamiri
Department of Software Engineering

Faculty of Computer Science and Information Systems
University Teknologi Malaysia (UTM)

+6019-7558500

Admin@Rshahamiri.com

Wan Mohd Nasir
Department of Software Engineering

Faculty of Computer Science and Information Systems
University Teknologi Malaysia (UTM)

+60177341003

wnasir@utm.my

ABSTRACT
Since computer’s software applications rapidly increased in
modern life, it is important to have enough reliability and
minimizing the probability of faults in software products.
Software testing is a process to find faults in software’s products,
due to increase software reliability. Because testing process is
very costly, automation techniques are needed to reduce these
costs and also, increase reliability. In automated testing, the
testing phases or part of them performed by intelligent methods,
in order to reduce human role in the process. Automatic testing
has several advantages such as increase testing speed, quality and
reliability, decrease testing resources and costs. In this paper, after
explaining software testing phases, we classified methods which
can use in automated software testing phases based on previous
researches with aim to reach above advantages. This method
classification has performed based on their applications in
software testing phases and effects on test automation.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verifications –
Model checking, Reliability, Statistical methods, Validation.

General Terms
Reliability, Verification.

Keywords
Software Testing, Intelligent Testing, Automated Testing,
Software Reliability.

1. INTRODUCTION
Software is a principle component of modern life. It is impossible
to do many things without the helping of computers and software.
The growth effects of them in our life are increasing day by day
and they have many critical duty. Therefore, it is very important
to have enough reliability and minimizing the probability of faults
in software products. Software Reliability Engineering is the

probability of failure-free software operation for specific period
of time in a specific environment[1]. Software Testing is used for
improving software reliability by finding errors and failures in
software products. Errors or faults are any repugnance between
what the software expects to do and actual outputs[2].
Error detection was performed by various testing process models
and techniques. These include many testing techniques like unit
testing, acceptance testing, load testing, regression testing and
many methods such as Black-Box and White-Box testing. Each of
these focuses on special domains to find faults. For example in
Black-Box testing, we investigating on software outputs accuracy
only, without considering how these outputs generated. On the
other hand, in White-Box testing, we completely concentrate on
outputs generation process[2].
Since software testing process is a very costly process in terms of
time, financial and resources, many software developers do not
keep enough attention to it. Consequently, their products became
very risky to fail and loosing market[3]. Therefore, we have to
find approaches to decrease testing cost and also increase
reliability. One approach is using methods to automating this
process. Researches show that automated and intelligent testing
process or at least portion of it, can significantly decreasing the
test cost. In automated testing, developers attempt to convert
testing process which performs by human, to perform by
computer’s software with intelligent techniques and algorithms
like Artificial Intelligence and Statistical methods.
Automated testing has several advantages. First, while computers
are faster than humans in repetitive tasks, the process can
complete sooner. Second, we can reduce human resources during
testing. Third, we can test more aspects of the software under test.
Finally, by reducing human role in the process, we can prevent
intentional or unintentional human faults. Consequently, testing
cost can reduce but, testing quality can improve and the software
product becomes more reliable.
In this paper, a method classification was presented which can
applied in automated software testing process based on previous
researches with aim to reach above advantages. This classification
was performed based on their applications in software testing
phases and effects on test automation. These techniques varied
between artificial intelligence and statistical methods.Figure.1
illustrates this classification.
The remaining parts of this paper are organized as follows. Before
explain which methods can use to automate software testing
process, this is necessary to know what are testing process phases
to understand how these methods can automate the testing
process. Section 2 addressed this issue. Section 3 introduces

Figure 1. Classification of automated software testing methods.

applications of AI and Statistical techniques to automated
software testing phases. Conclusion, limitation and future works
are mentioned in section 4.

2. SOFTWARE TESTING PHASES
Based on]4[, testing process can divide into four phases which
explains in following subsections. With this classification, a
framework created to imply testers must consider which problems
before moving to next problem and which phase can automate by
which methods those mention in section 3.

2.1 Modeling the software’s environment
Testers must simulate relationships and interactions between
software and its environment. Usually these interactions
performed via interfaces such as human, software, file system and
communication interfaces. Methods that can simulate the
interfaces may usable for automating this phase.

2.2 Selecting test scenarios
In this phase, testers must select proper test scenarios and Test
Cases that covering each line of source code, input sequences and
execution paths to ensure all software’s modules tested
adequately. Because the number of test cases can be very large to
execute them all in limited testing time, this is very important to
selecting test cases that have higher probability of finding errors.
They are some methods that can effectively automate test case
selection.

2.3 Running and evaluating test scenarios
After preparing and selecting test cases, testers must execute them
and then, they must evaluate outputs to find if there is a fault.
Testers compare the outputs generated by executed test cases and
the expected outputs based on defined specifications in analysis
phase and system specifications. Automation process requires a
method to mapping each input to corresponding output of the
entire operational environment and a tool for comparing these
outputs. In section 4, an intelligent input/output mapping
technique is introduced.
Sometimes expected outputs are not clearly defined. This may
duo to uncertainty in software’s behavior or lack of complete

specification. Stochastic software modeling methods may use to
facilitate this difficulty.

2.4 Measuring testing process
It is very important to identify what is the status of testing process
and when the testing process can stop. Testers need quantitative
measurement for determine the process status by cognizing the
number of bugs in the software and the probability that any of
these bugs will be discovered. Some software quality estimation
techniques can applicable for automation of this process.

3. AUTOMATED SOFWARE TESTING
METHODS CLASSIFICATION
These methods applied for automating a phase or at least some
part of a phase in software testing process. As mentioned before,
the classification was based on software testing phases and the
applications of methods in software testing phase automation. In
following, an attempt is made to explain such methods.

3.1 Modeling the Software’s Environment
(Phase 1)
Since regression testing is a process to retest functionalities of
software that remain in new versions, Regression GUI Testing is a
process to reevaluate pre-tested parts of the software GUI in
modified version of the software. The GUI test designer must
regenerate test cases to target these common functionalities, and
keeping track of such parts is an expensive and challenging
process. So, usually in practice, no regression testing of GUI is
performed. Many of GUI test cases from previous software testing
process are unusable.
Commonly, a GUI test case contains a reachable initial state, a
legal event sequence and expected states. The initial state is used
to initialize the GUI to a desired state for specific test case and, an
expected state is the state after specific event is executed.
Therefore, a modification to the GUI can affect any of these parts
and lead to useless of pre-designed test cases.
The GUI regression test cases can divide into two groups: affected
test cases and unaffected test cases. Affected are test cases who
should rerun but duo to modifications in GUI, they must design
again. Unaffected are test cases that can execute exactly like
original software GUI testing process but because they already
executed in previous testing process, there is no need to test them

again. These unaffected test cases are verified functionalities of
the software GUI that do not change in the new version. As
mentioned above, redesigning of affected test cases are expensive
and challenging.
Memon [10] presents a method to perform GUI regression testing
using AI Planner. He presents GUI test cases using tasks as pair
of initial and goal states. These tasks remain valid in modified
GUI, even changes to GUI cause test cases unusable. Each task
represents a GUI’s functionality. As a result, it is possible to
generate affected test cases from these tasks automatically. Also,
this technique uses a GUI model to automatically detect changes
to the GUI and identify test cases that must rerun.
In this study a Regression Tester was designed to determine and
regenerate affected test cases. The overview of this regression
tester is shown in Figure 2. One of the inputs is Original test suits
that generated to test the original GUI. Other inputs are
representations of original and modified GUIs. Regression Tester
determined which test cases are affected, unaffected or must be
discarded. Because discarded test cases verified functionalities
that not further exist to modified software GUI, they must
eliminate from testing process. Test case selector partitions the
original test suits into (1) unaffected test cases, (2) obsolete tasks
test cases, (3) illegal event sequence affected test cases and (4)
incorrect expected states affected test cases. Illegal event
sequence affected test cases are regenerated by Planning-based
test case regenerator. But if planner failed to find a plan, the test
case marks as discarded because it belongs to absolute tasks.
Expected-state regenerator is used to regenerate expected state
for incorrect expected state test cases and if it fails, test case will
discard.

Consequently, this method performed regression testing based on
re-planning affected test cases and associating a task with each
test case and also create an interface between original and
modified GUI to generate test cases. Furthermore, this method
automate test case selection phase (the second phase of software
testing phases) in regression GUI testing.

3.2 Selecting the Test Scenarios (Phase 2)
Test case selection is second phase in software testing process.
Testers consider in effective test cases. Effective test cases can
reveal the majority of software faults. According to[11], an
effective test case should:

• Have a high probability of finding an error

• Not reevaluate tested sections
• Be the best of its breed
• Be neither too complex nor too simple

Each test case is defined by a set of inputs and expected output
values. Basically, since the numbers of all test cases are very
large in modern software, it is impossible to execute all of them in
limited time and resources. Also, because many of test cases
evaluate same section and part of the software, there is no need to
execute all of them. Therefore, testers must wisely select effective
test cases with higher probability to finding faults. Likewise, if
executing a test case does not report any faults, testers must not
imagine the software is fault free and reliable. In fact, testers only
waste their time in these situations.
So, this is very important to determine and select effective test
cases. Automating this process can significantly decrease testing
cost and increase testing quality. A good test case reduction
approach introduced in [12]. This research reveals that program’s
input-output analysis can identify which input attributes mostly
affect the value of a specific output. It shows I/O analysis can
significantly reduced the number of test cases. An Artificial
Neural Networks (ANN) used to automating I/O analysis by
identifying important attributes and ranking them. An ANN is a
mathematical modeling of human neural networks that can learn
from past experience using <input, output> pairs in a training
phase and generate outputs for unknown inputs based on previous
data. An ANN consists of layers -each layer represented by one or
more processing unit called neurons- and connections between
them. ANN’s can learn by adjusting connections values in the
network[6].
This study modeled the software behavior using ANNs and
identified which input has less effect on producing outputs by an
ANN pruning algorithm. Pruning an ANN removes unnecessary
connections between neurons but retaining significance ones. The
removing process deletes unimportant inputs and also decreases
the number of test cases. Finally, they generated test cases by
remaining most significant inputs. Figure 3 depicts this process.

Figure 3. Automated test case generation and reduction.

3.3 Running and Evaluating Test Scenarios
(Phase 3)
As mentioned in section 2, evaluating test results in third phase of
software testing phases required software’s fault free output.
Testers need a method to generate outputs of each input that uses
in executed test cases. Then, they can compare this output with
the test case execution output and if these outputs are not the
same, a fault is detected. This is a place which testers need
automatic testing Oracle. The Oracle is a fault free source of
expected outputs. Non-automatic testing oracle can be a program
specification or the developer knowledge of software’s behavior

Original test
suite

Original &
modified GUIs
representations

Unaffected
test cases:

need not be
rerun

Discarded test
cases

Test cases to
rerun

(2)

Regression Tester

Affected Test Cases

(1)

(3) (4)

Test Case
Selector

with illegal
event sequence

with incorrect
expected state

Expected
state

regenerator
Planning-
based test

case
regenerator

Figure 2. Overview of the Regression Tester.

[13]. An Oracle must accept every input specified in software’s
specification and should always generate a correct result. The
process of using automated oracle is shown in Figure 4.

Let which is software input vector,

 is corresponding output vector and is
software behavior as a continuous function. In [14], Ye et al.
modeled software behavior with modeling the relationship
between the inputs and outputs () and developed an automatic
Oracle. In this study, an ANN used to approximate this behavior.
Then, this model can use as automated Oracle for generating
correct outputs. Because ANNs have a suitable capability to
modeling continues deterministic functions, this method of
approximation has a good accuracy if is deterministic and
without ambiguity. For situations with uncertain behavior, testers
must use another approaches.
Last and his colleges [7, 15] introduced a full automated black-
box regression testing method using Info Fuzzy Network (IFN).
IFN is an approach developed for knowledge discovery and data
mining. The interactions between the input and the target
attributes of any type (discrete and continuous) are represented by
an information theoretic connectionist network. An IFN
represents the functional requirement by an “oblivious” tree-like
structure, where each input attribute is associated with a single
layer and the leaf nodes corresponds to combinations of input
value[7].
The authors developed automated Oracle which can generate test
cases, execute and evaluate them automatically based on previous
version of the software under test. The structure of their method is
shown in Figure 5. As can be seen in Figure 5, Random Test
Generator provides test case inputs by means of Specification of
System Inputs. These specifications contain information about
system inputs such as data type and values domain. Test Bed
executes these inputs on Legacy Version (Previous version of the
software under test) and receives system outputs. Next, these test
cases are used to train and model IFN as automated Oracle.
Therefore, this Oracle can be used to detect faults in new software
version. This method completely automated software testing’s
third phase in regression testing.

3.4 Measuring Testing Process (Phase 4)
Software quality model has many applications in modeling the
software reliability engineering. It predicts a statistical measure of
software reliability and enables the testers to perform quality

control and risk analysis. Quality Control can use to answer the
question “When Stop Testing?” Answering this question can help
testers to “Measuring Testing Process”, the last phase of the
software testing phases. One approach is to use software metrics.
Prior studies show that software metrics are correlated to number
of faults. Therefore, software metrics can apply to predict the
number of faults in program’s modules. Consequently, testers can
evaluate quality level of the software under test and make a
decision when stop testing process based on previous experiences.
These metrics are quantitative descriptors of modules attributes.
Also, software metrics are usable to perform risk analysis. Risk
analysis help developers to identify risky module and have special
attention to them.
They are two types of methods to perform quality modeling
automatically: methods that can model linear relationship between
input and output patterns such as regression analysis, and methods
who can model non-linear relationship such as ANN and Case-
Based Reasoning (CBR). A CBR system is a computational
intelligent expert system which can find solutions to a new
problem based on the solution of similar past problems. This
solution represented by cases in a library, based on prior
experience. A CBR system consists of a case library, a solution
process algorithm, a similarity function and the associated
retrieval and decision rules. CBR is useful in situations where the
environmental knowledge is not enough and when an optimal
solution is not known. To put it differently, CBR is an automated
reasoning process aimed to solve new problems[5].
Because the relationships between software metrics and quality
factors are usually complex and non-linear, and methods that
mentioned above using them to model software quality, former
methods have better accuracy.
Khoshgoftar et al. [16] proposed a method for using ANN and
Regression Modeling to predict the number of faults in program
based on software metrics, and compare results of both methods.
The process is shown in Figure 6. Software metrics are used as
input for trained ANN and independent variable to regression
model. Also, outputs of ANN and regression model (dependent
variable) are predications on number of faults in the module under
test. By comparing the prediction fault in both methods, this study
has shown that ANN prediction was superior to regression model.
In addition, testers must manually choose which program’s
metrics related to program quality and have effects in fault
prediction. But this is not necessary in ANN, because during the
learning process, effective metrics are automatically chosen by
adjusting the network’s parameters.
In modern complex software systems, number of these metrics
can be very large and some of them have a little effect in
prediction of faults. So, modeling the quality control may need a
lot of information processing and time consuming. As a result of a
study conducted in [17], using of Principle Component Analysis
(PCA) is suggested to reduce the number of software metrics and
deriving most important and effective metrics for modeling the
quality of the software. PCA is a statistical technique for finding
patterns in data of high dimension, and expressing the data in
such a way as to highlight their similarities and differences. Once
these patterns have found in data, PCA compress the data by
reducing the number of dimensions, without much loss of
information[8]. If we have an n × m matrix, we can reduced it to
an n × p matrix (p<m) using PCA, by extracting linear
combination of the original data. The major findings of this

Test Case
Outputs

System
outputs

System
inputs

Test case
Inputs

IFN
Structure

Test Cases
Test case
Outputs

System
outputs

System
inputs

Test case
Inputs

Specification of
System Inputs

Random Test
Generator

Legacy Version

Test Bed

IFN Induction
Algorithm

The Software
under Test

Test Bed

Test
Library

IFN
Model

Fault or
not Fault

Input

Test
Oracle

The software
under test

Correct
Output

Probable
faulty
output

Comparator Fault or
not Fault

Figure 4. Automated Test Case Evaluation.

Figure 5. IFN Based Black-Box Testing.

research is that using of PCA has a proper prediction in both ANN
and regression model.

As mentioned before, another application of quality modeling is
in risk analysis. With risk analysis in earlier phases of SDLC1,
developers and project managers can determine error-prone
modules and assigning testing resources more accurately.
Moreover, because this determination has done at earliest SDLC
phases, testing and maintenance cost can reduce remarkably. An
ANN based approach has recommended in [18] to classifying
error-prone modules based on module attributes and quality
factors, to fault-prone and not fault-prone modules. Then,
developers can concentrate on designing and testing the fault-
prone modules more carefully.
Similar application of ANN is in testability. Testability is the
probability of test case inability to finding faults in a faulty
module. To put it differently, it is the probability that a test case
cannot find faults, if there are faults. Testers could use testability
to find parts of the software that may hide errors. Because
testability is a dynamic aspect of software attribute, this is a bit
challenging to measure directly. The study of predicting
testability with ANN conducted in [19]. The findings of this study
indicate that ANN modeling of static measurement in source code
can predict the module testability.
Another intelligent technique in software quality modeling is
CBR. Khoshgoftaar and Seliya [5] presented a three-group quality
classification technique using CBR. In this research, they applied
a two-group classification method three times on a given data set.
By combining these three iterations, it is possible to classify
modules into any of the three groups. A two-group risk analysis
classifier divides modules into low-risk and high-risk, but a three-
group classifier divides modules into low, medium and high risk
modules. Figure 7 explains the process of a two-group risk
classifier.

1 Software Development Life Cycle: The process to developing a

software-based system.

The case library includes previous project data. This data has
been collecting form prior similar systems. In this case, the case
library contains software quality factors and corresponding risk
class. The risk class determined with the number of faults
detected in related software modules. Similarity function
measures how much new case relates to those on the library. A
solution process algorithm decides which case in the library
similar to this new case, based on similarity function
measurement. At the end, most relevant cases fetch from the
library and used to identify risk class of new case.
This is possible to perform a two-group classification by any
method mentioned above. But, using a CBR as classifier has
several advantageous. As an illustration, users can understand
each solution has derived with a reasonable way. Therefore,
unlike ANNs, CBR does not treat as Black-boxes.
In addition to these methods, there are other methods researchers
have been using for software quality modeling [5] such as
decision trees, logistic regression, optimized set reduction, fuzzy
logic and genetic programming. But methods that discussed above
are must effective and prevalent.

4. CONCLUSION
In this paper, a classification of automated and intelligent
methods has presented which can use in software testing phases.
Each phase has introduced and explained based on how it can be
totally or partially automated. The methods that used varied
between AI methods like ANNs, CBR and AI planning, or
statistical methods such as Regression Modeling and PCA. Some
of the methods applicable in any type of test and some in special
tests like regression testing.
Each of these methods has limitations based on the tools they
used. For example, ANN models of software cannot be accurate
enough if software is non deterministic. Or IFN model can use if
application is data oriented. In addition, testers must consider
overhead costs of using these methods, and extra knowledge and
specialist needed for developing such techniques. On the other
hand, resent studies in comparing costs of using and not using
these methods show that these automatic approaches have
significant effect in reducing testing cost and increasing software
quality.
Finally, because each method has affect in special type of test,
elimination of human role in testing process cannot be complete
yet. Consequently, more researches are needed in order to
automate hole testing process.

5. REFERENCES
[1] Su, Y.-S. and Huang, C.-Y. Neural-network-based

approaches for software reliability estimation using dynamic
weighted combinational models. Journal of Systems and
Software, 80, 4 2007), 606-615.Ding, W. and Marchionini,
G. 1997 A Study on Video Browsing Strategies. Technical
Report. University of Maryland at College Park.

[2] Myers, G. J. The Art of Software Testing, Second Edition.
Wiley, 2004.

[3] Pressman, R. J. Software Engineering :A Practitioners
Approach . Sixth Edition. McGraw-Hill 2005.

[4] Whittaker, J. A. What is software testing? And why is it so
hard? Software, IEEE, 17, 1 2000), 70-79.

Case

Library

Solution
Process

Algorithm

Similarity
Function

New
modules
attribute

Output:
High-risk Module

Low-risk Module

CBR

Software
Metrics

ANN

Manually
select

effective
metrics

Regression
Model

Number
of

Figure 6. Predicting sotfware faults using software metrics.

Figure 7. CBR two-group quality classifier.

[5] Khoshgoftaar, T. M. and Seliya, N. Three-Group software
quality classification modeling using an Automated
Reasoning approach. World Scientific, City, 2004.

[6] Fausett , L. Fundamentals of Neural Networks: Architecture ,
Algorithms and Applications. Prentice Hall 1994.

[7] Last, M. and Freidman, M. Black-Box Testing with Info-
Fuzzy Networks. World Scientific, City, 2004.

[8] Smith, L. I. A tutorial on Principal Components Analysis.
City, 2002.

[9] Stockburger, D. W. Regression Models. Atomic Dog
Publishing, City, 2001.

[10] Memon , A. M. Automated GUI Regression Testing using AI
Planning. World Scientific, City, 2004.

[11] Saraph, P., Last, M. and Kandell, A. Test case generation
and reduction by automated input-output analysis. Institute
of Electrical and Electronics Engineers Inc., City, 2003.

[12] Saraph, P., Kandel, A. and Last, M. Test Case Generation
and Reduction with Artificial Neural Networks. World
Scientific, City, 2004.

[13] Aggarwal , K. K., Singh, Y., Kaur , A. and Sangwan , O. P.
A Neural Net based Approach to Test Oracle. ACM
Software Engineering Notes2004).

[14] Ye, M., Feng, B., Zhu, L. and Lin, Y. Neural networks based
automated test oracle for software testing. Springer Verlag,
Heidelberg, D-69121, Germany, City, 2006.

[15] Last, M., Friendman, M. and Kandel, A. Using data mining
for automated software testing. International Journal of
Software Engineering and Knowledge Engineering, 14, 4
2004), 369-393.

[16] Khoshgoftaar, T. M., Pandya, A. S. and More, H. B. A
neural network approach for predicting software
development faults. City, 1992.

[17] Khoshgoftaar, T. M., Szabo, R. M. and Guasti, P. J.
Exploring the behavior of neural network software quality
models. Software Engineering Journal, 10, 3 1995, 89-96.

[18] Khoshgoftaar, T. M., Allen, E. B., Hudepohl, J. P. and Aud,
S. J. A. A. S. J. Application of neural networks to software
quality modeling of a very large telecommunications system.
Neural Networks, IEEE Transactions on, 8, 4 1997, 902-909.

[19] Khoshgoftaar, T. M., Allen, E. B. and Xu, Z. Predicting
testability of program modules using a neural network. City,
2000.

