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Abstract— The information security community has been 
attempting to increase the effectiveness and efficiency of malware 
classification. Many sectors could benefit from the development of 
an anti-malware system that can combat unidentified malware. 
Deep learning (DL) models enable the development of intelligent 
anti-malware solutions, which can be proposed. It might be able to 
mathematically generalize the identification of recently released 
malware by using such models to establish a link between a 
particular malware family x and the malware family y that it is a 
member of f: x 7 y. To categorize each malware family, CNN and 
M-CNN DL models are trained. In order to achieve this, Malimg 
dataset is used which made up of malware images that were 
processed from malware binaries. 

Keywords- artificial intelligence; artificial neural networks; 
machine learning; malware classification; deep learning  

I.  INTRODUCTION  

As long as it is regarded as any programmable device, 
malware refers to any kind of malicious software that is 
designed to harm a system or even a network. The reason for 
this is that malware sometimes contains harmful executable 
code that is capable of eradicating the system's default or 
regular services and functions [1]. Cybercriminals typically 
utilize malware to further their own individualized or collective 
goals. Important information will be taken from victims for 
nefarious purposes, such as gathering information for identity 
theft by luring victims into providing it, gathering credit card or 
other financial data, launching denial-of-service attacks against 
other networks powered by controlled computers, and many 
other things. These crucial details are typically presented in the 
form of financial information, emails, passwords and even 
healthcare records.  

Researchers and security professionals were compelled by 
the malware's growth to create new classification schemes to 
separate these distinct varieties of malware, particularly in 
terms of features. For the objective of classifying malware, 
numerous classification techniques, including deep learning 
and statistical analysis, have been developed. Deep learning 

techniques use several kinds of multilayer networks that learn 
representations at various degrees of abstraction [2]. 

This paper will concentrate on the investigation of deep 
learning-based approaches for classifying Android malware. It 
will be possible to undertake thorough analysis of the present 
systems for categorizing Android malware by doing research 
based on previously gathered material. This study will be able 
to supplement earlier research by addressing some knowledge 
gaps and introducing some fresh concerns to the field.  

II. MALWARE FAMILY 

Based on McAfee’s report, the malware application of 
Android has increased to 22 million in 2017. The most 
dominant mobile Operating System is Android as its market 
leads by capturing 86% of the total market [5]. Symantec also 
reported that every 1 of 5 Android applications can be 
considered as malware. It is bold to assume that Android 
application security has to play its crucial role especially for the 
researchers in order to defend their users from malicious 
malware developers. 

A. AnserverBot 

AnserverBot refers to an Android Trojan that has been 
considered as one of the most complicated Android malware. 
Usually it will piggyback on legitimate applications which are 
currently being used in popular third-party Android especially 
in China. It is worth paying attention to this Trojan in terms of 
several aspects as it is developed with some complicated 
techniques that are significant in evading analysis or even 
detection. Furthermore, this malware program is active in 
fetching commands from encrypted blog posts as it has built-in 
bot functionality. Due to the matter of this fact, the bar for 
reverse engineering analysis has been raised. In Android 
malware history, AnserverBot has been known as the prime 
malware that is able to apply the mentioned technique 
efficiently integrated into one real-world instance. 
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B. DroidSheep 

DroidSheep is known as a tool used for listening to network 
traffic by threat actors. It allows them to gain specific access 
into online accounts of numerous popular websites on the 
internet. By running this malware, threat actors will be able to 
impersonate victims' accounts thus accessing sites without 
using a secure connection. It also allows threat actors to sniff 
wireless network traffic which later benefits them in stealing 
authentication tokens. As a result, the threat actors once again 
will be able to impersonate the victim. However, the good news 
is DroidSheep is unable to infiltrate current popular sites such 
as Yahoo, Facebook and Google as long as it supports HTTPS 
connections. 

C. DroidKungFu 

DroidKungFu refers to a malware that affects Android 
Operating System which primarily targets the users in China. 
This malware capables of evading current anti-virus software 
thus rooting the vulnerable Android phones without any 
problems [4]. It is noteworthy because DroidKungFu encrypts 
two known roots which is Udev Exploit and 
RageAgainsTheCage exploit in order to break the security 
mechanisms. It will decrypt these two exploits before executing 
them, which refers to launching an attack when it runs. 
Repackaged applications have the attachment of DroidKungfu 
inside it that is available in numerous alternative application 
markets. As a result, a new service and a new receiver will be 
added into the infected application. Later on, a notification 
regarding the system state of booting will be sent to the receiver 
so that the service can be launched without any user interactions 
as the system finishes booting. 

III. DEEP LEARNING 

The multilayer networks that make up the deep learning 
model are connected to various levels of abstraction when 
learning data representations. [2]. Although the invention of 
neural networks served as the foundation for the rise of deep 
learning, several research have produced conflicting results 
regarding how the two are related. Machine learning that is 
based on neural networks is called deep learning. However, 
there is a claim that deep learning is the sort of neural network 
technology that is most frequently used. 

Neural networks replicate the biological neurons that 
communicate with the outside world [6]. Walter Pitts is a 
logician, while Warren McCulloch is a neurophysiologist. Both 
of them were inspired to propose the conceptual "M-P" neuron 
model by the structure of biological neurons [7]. In a biological 
neural network, the output values "0" or "1" denote the two 
states of neuronal inhibition and activation. A neural network is 
created by connecting several neurons together in a layered 
structure. Neural networks are regarded as mathematical 
models with many characteristics for use in macroscopic 
mathematical computation. Neural network-based machine 
learning falls into two primary groups. The first one is based on 
the perceptron model [7]. Using a multilayer perceptron, one 
can train a network to get the desired results while taking use of 
the back propagation algorithm's mistake [9]. The Boltzmann 
machine serves as the foundation for the second [10]. A neural 
network at random that generates results according to 
probability distribution. 

A. Convolutional Neural Network 

It has learnable parameters within the hidden layers of 
neurons, such as inputs, performs a dot product, and exhibits 
non-linearity, which makes it similar to feedforward neural 
networks. These parameters will be sent to the neurons. The 
entire network will represent the mapping between the 
unprocessed image pixels (x R m) and the class grades (y, f: x 
7 y). Based on the size of the layer inputs and outputs, the usage 
of ReLU, and the use of the traditional Softmax function as a 
network classifier, the design of this method is modified [11]. 

B. Gated Recurrent Unit 

The vanishing gradient problem that occurs with a standard 
recurrent neural network is the goal of the gated recurrent neural 
network architecture [13]. Long short term memory (LSTM) is 
a version of this since both designs are equally good at 
producing results. To address the disappearing gradient issue, it 
used update and reset gates. The information that should be sent 
to the output will be determined by the two vectors. As an 
illustration, the network architecture is built using a mix of a 
support vector machine (SVM) and a form of a recurrent neural 
network (RNN) as well as a gated recurrent unit (GRU) [12]. A 
deeper understanding of the deep learning approach will be 
gained by studying the behavior of this model. 

C. Convolutional Neural Network 

It is a neural network that resembles CNN and has a hidden 
layer of perceptrons. However, the VGG-16 [14] is the 
foundation of the model architecture. Every network starts with 
a stack of convolutional layers, followed by three fully 
connected layers with the same configuration, and then the soft-
max layer, which serves as the top-level layer. Every hidden 
layer also has rectification non-linearity (ReLU) installed. 

TABLE II.  COMPARISON BETWEEN METHODS 

Index 
Referenc

e 
Features Method Limitation 

1 [17] Battery 
Recurrent Neural 
Network (RNN) 

Difficult to 
be trained 

2 [18] 
Grayscale 

Image 

Convolutional 
Neural Network 

(CNN) 
 

Lack of 
hidden 
layers 

3 [15] 
Grayscale 

Image 
K-Nearest Neighbor 

(KNN) 
Memory 
intensive 

4 [19] API C4.5 
Informatio
n entropy 

5 [16] 
Grayscale 

Image 

M-Convolutional 
Neural Network 

(M-CNN) 

Need a lot 
of data for 

training 
 

IV  RESEARCH WORKFLOW 

To compare the performance of CNN and M-CNN in 
classifying Android malware, several phases and activities are 
prepared to ensure the study is conducted systematically. The 
research framework is divided into five phases which are firstly 
about the research planning and initial study. The second phase 
is data preprocessing followed by feature selection in the third 
phase. The next phase is dedicated for the model development 
before pursuing for the testing and evaluation on the last phase. 
The performance measures of the classification technique is 
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used in this research as a measurement to compare both models 
in classifying Android malware. The general research 
framework is shown as in Fig.1. 

 
Figure 9.  Research framework 

 A.   Research Planning and Initial Study 
The information acquired from the literature allowed for a 

better understanding of the trends and tendencies in the study 
field, which is essential to identifying the difficulties and 
problems. As a result, research objectives and scopes could then 
be determined. Setting the course of the research is the goal of 
research objectives. There are three research aims in this study, 
as was described in chapter one. Exploring the research field to 
ensure that it is neither too large nor too tiny is known as the 
research scope. The goals and parameters of this study are 
discussed in chapter one of this documentation. 

B.  Data Preprocessing 

To accomplish this research, a dataset is required in order to 
evaluate the model in classifying features. The dataset will be 

used which consists of malware and non-malware samples. The 
binary form of the samples will be processed to grayscale 
images. It is created through the reading of malware binaries 
into an 8-bit unsigned integer composing a matrix of M ϵ Rm×n. 
The matrix will be visualized in a grayscale image form which 
has a range of values [0,255]. From the grayscale image, Black 
color can be interpreted as 0 while white color as 1. Data 
preprocessing is significant in order to obtain maximum 
efficiency in malware analysis. It is because the raw data will 
be unable to support machine learning [20]. 

 
 
 
 
 
 
 

 

 

 

Figure 10.  Conversion of binary file to grayscale image 

The malware images were rescaled to a 2-dimensional 
matrix and then compressed into a n x n-size array, yielding a 1 
x 1024-size array [21]. The indexed malware family name was 
labeled to each of the feature arrays that corresponded to it. The 
features were then standardized using Eq.1. 

                                          (1) 

Where μ refers to the mean value, σ is the standard deviation 
and   is its feature to be standardized. Although the dataset is 
made up entirely of images, and standardization may not be 
appropriate for such data, keep in mind that the images are taken 
from malware binary files. As a result, the features aren't 
actually images to be started with. 

C. Feature Selection 

The feature selection is a well-known way in order to reduce 
the dimension of the dataset. By removing the unnecessary and 
redundant features, the number of features can be limited which 
is giving a positive impact towards the dataset. Hence, the 
performance of generalization and operational efficiency can be 
improved by selecting an optimal subset of features. In general, 
the steps of feature selection can be divided into generation, 
evaluation, stopping criterion and validation [22]. 

Features can be analyzed and summarized according to 
three common categories which are static features, dynamic 
features and hybrid features. Most of the time, it depends on 
whether they are acquired by running an Android application or 
not [23]. By doing selection on the dataset, all of the selected 
features are in the form of grayscale images. It can be classified 
into the category of static features. In terms of static features, it 
refers to features that can be generated through the process of 
code analysis [24]. Usually, researchers will select either 
permissions, API call, opcode sequence or function call graphs 
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as features. The permission features are the best single predictor 
of the application malignity [25]. However, the combination of 
visualization-based analysis and deep learning have provided a 
great impact in the research field related to privacy and security 
lately [26]. Most of the proposed solutions are able to achieve 
high accuracy against windows malware classification [17]. As 
a result, this research will validate the classification of Android 
malware using grayscale images.  

D. Model Development 

Convolutional Neural Network (CNN) consists of hidden 
layers of neurons with specific parameters that can be learned 
such as inputs, dot product and non-linearity. The whole 
network can be expressed as mapping between raw image 
pixels x ϵ Rm and class scores y, f : x 7→ y. The modification 
on the architecture of this method is made based on the size of 
layer inputs and outputs, the use of ReLU with conventional 
Softmax function as network classifier [11]. 

E. Testing and Evaluation 

The performance metrics can be obtained by referring to 
typical binary classification which refers to the results of a 
prediction that can be divided into four types which are false 
positive, true positive, false negative, and true negative [27]. 
False negative can be an indicator of the incorrect prediction 
number in a recurrent malware class while true negative 
indicates the correct prediction number in a recurrent malware 
class. Next, false positive will be referred to as the incorrect 
prediction number in a primary malware class while true 
positive refers to the correct prediction number in a primary 
malware class. The performance of the model was evaluated by 
using some important variables such as accuracy, precision and 
recall. 

The most important performance metrics are precision and 
recall. However, both of them only provide a partial evaluation. 
It is because precision will represent the ratio of all samples 
correctly predicted to be positive among all samples predicted 
to be positive while recall will represent the ratio of all positive 
samples correctly predicted among all positive samples. 

                           (2) 

                            (3) 

 

V. EXPERIMENT DESIGN 

The experimental design starts with data preprocessing 
where the data were rescaled, compressed before generating it 
into desired output for analysis. Next step is generating the 
dataset from Google Drive directory followed by standardizing 
target size and batch size of the dataset. Quick analysis was 
made in order to evaluate the dataset according to its classes. 
Furthermore, the generated batches were split between training 
and testing. Lastly, the testing and evaluation phase is where the 
performance measures of both models are compared in terms of 
classifying malware. All methodology steps below are done 
using Python programming language in the Google 
Colaboratory environment. The experiment workflow is shown 
as in Fig.3. 

 

 

 

 

 

 

 

 

 

 

Figure 11.  Experiment workflow 

All experiments in this study were conducted on a laptop 
computer with Intel® Core™ i5-7300HQ CPU @ 2.50GHz, 
4GB of DDR4 RAM and NVIDIA GeForce GTX 1050. Table 
II shows the hyper-parameters used by the models in the 
conducted experiments. 

 The Malimg dataset was generated by using the 
ImageDateGenerator () from Keras that allows to perform 
image augmentation. It was done by producing batches of 
normalized tensor image data from the respective malware 
families. All images were resized to the specified size of 224 x 
224 x 3 and the batch size that was selected is 1000. The list of 
generated malware is shown in Fig.4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12.   List of malware classes 

As the 25 different classes of malware are recognized, the 
dataset is evaluated using the Matplotlib from Python. The 
classes of malware generated through the batches of grayscale 
images. The percentage of malware classes obtained through 
the sum of labels over the number of label’s dimensions in 
array. The horizontal axis represents the independent variable 
which is the malware class. Meanwhile, the vertical axis 
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represented the percentage of malware class. The bar graph 
formed from the percentage of malware classes is shown in 
Fig.5. 

 

 

 

 

 

 

 

 

 

 
Figure 13.  Percentage of malware classes 

According to the Fig.5, the dataset is in an unbalanced state. 
It is because there are more than 30% images belonging to class 
2 which refers to Allaple.A and 17% images belonging to class 
3 which refers to Allaple.L. Table II shows the hyper-
parameters used by both models in the conducted experiments. 

TABLE II.  HYPER-PARAMETERS USED IN BOTH MODELS 

Hyper-parameters CNN M-CNN 

Batch Size 1000 1000 

No. of Hidden Layers 2 5 

Epochs 10 10 

 

The Malimg dataset is split into training and testing datasets 
as the initial stage before training the model. All of the models 
underwent 10-epoch training on 6537 malware family variants 
(6400 mod 256 = 0), which made up about ≈70% of the 
preprocessed dataset. However, only ≈30% of the preprocessed 
dataset which refers to 2560 malware family types (2560 mod 
256 = 0) was used to test the models over the course of 10 
epochs. Using the classification_report() function of 
sklearn.metrics, the classification measures accuracy, 
precision, and recall were all calculated [28]. The experiment 
findings for the models that were given are compiled in Table 
III. 

TABLE III.  PARAMETERS USED IN BOTH MODELS 

Variables CNN M-CNN 

Accuracy 43.33% 50.00% 

Precision 0.24 0.27 

Recall 0.43 0.50 

 

 
Figure 14.   Confusion matrix of CNN 

 
Figure 15.  Confusion matrix of M-CNN 

Table III shows the testing performance of CNN and M-
CNN models in multinomial classification on malware classes. 
M-CNN had a test accuracy of ≈50.00%, a precision of 0.27 and 
a recall of 0.50. The table also shows the testing performance 
of CNN having a test accuracy of ≈43.33%, a precision of 0.24 
and a recall of 0.43. All the models scored higher for Allaple.A 
which is the malware with the greatest number of variants, as 
can be seen in the confusion matrices. In this instance, it might 
be because relative populations of each malware family were 
not taken into account when data partitioning was used to 
separate the dataset into training and testing data. 

However the Allaple.A is frequently mistaken for the 
Allaple.L. In actuality, they both had worm-type backgrounds 
and had the same trait. As a result, there might have been 
similarities in their code. The Fakerean, on the other hand, has 
consistently been mislabeled as a Yuner.A. It's because the 
dataset only contains a small number of examples of Fakerean. 
Additionally, these malwares share a Trojan-type background, 
which is where they both originated. 

VI. DISCUSSION 

It is noticeable that the M-CNN model stands out more 
compared to CNN model presented in this study. This finding 
comes as no surprise as the M-CNN is constructed with 
relatively the most sophisticated architecture design among the 
presented model. Particularly, it is because of its 5-layer design. 
In terms of neural networks, the number of layers residing is 
directly proportional to the complexity of a function it can 
portray [29]. In a specific way, the performance of a neural 
network is directly proportional to the number of its hidden 
layers. This logic describes the hypothesis which is the less 
number of hidden layers that a neural network possesses, the 
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less its performance is. As a result, the findings in this study 
supported the literature explanation as the CNN came second 
(≈43.33% test accuracy) with a 2-layer design. 

According to the results in Table III, the test accuracy 
of≈50.00% clearly shows that the M-CNN model has the 
highest predictive performance compared to the CNN. As a 
matter of fact, M-CNN has a more complex design compared 
to its rival. Firstly, it consists of 5-layer design that lets it 
perform complex mappings between features and labels. 
Secondly, it has the capabilities in learning from data of 
sequential nature especially for which an image data belongs. 
Thirdly, all hidden layers are equipped with the rectification 
non-linearity as its model architecture is based on VGG-16 
[14]. As a result, it had longer computing time compared to 
CNN as it had more non-linearities introduced in its design. The 
CNN model might be able to improve its predictive 
performance by adding more hidden layers and better non-
linearities to the architectural design. Thus, the complexity will 
be able to support the model to be on par with the M-CNN 
model. 

VII. CONCLUSION 

The research is an exercise to explore the model 
performance of CNN and M-CNN in classifying malware from 
25 different classes in the Malimg dataset. Further research is 
needed to come out with valid and promising models and 
results. Based on the results achieved from Table III, it shows 
that M-CNN model had the higher predictive accuracy 
compared to CNN model, having a test accuracy of ≈50.00%. 
There are several that can be made in order to improve the 
outcomes in the future. Since the accuracy of M-CNN 
outperforms CNN, the architecture design of CNN may provide 
greater insights on malware classification by adding more 
hidden layers, improving non-linearities and employing an 
optimal dropout. Such ideas in improving the architecture 
design of the models may give an idea on which architecture 
will serve best in the engineering of adaptive anti-malware 
systems [12]. 
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