

32

UTM Computing Proceedings

Innovations in Computing Technology and Applications
Volume: 6 | Year: 2024 | ISBN No. : 2976-2278

Android Malware Classification Using Deep Learning
Methods On Static Features

Fitri Zulkarnain Bin Zaharen, Aida Ali, and Howida Abu-baker
Faculty of Computing,

Universiti Teknologi Malaysia,
81310 Johor Bahru, Malaysia

fzzaharen@graduate.utm.my, aida@utm.my, howida10@gmail.com

Abstract— The information security community has been
attempting to increase the effectiveness and efficiency of malware
classification. Many sectors could benefit from the development of
an anti-malware system that can combat unidentified malware.
Deep learning (DL) models enable the development of intelligent
anti-malware solutions, which can be proposed. It might be able to
mathematically generalize the identification of recently released
malware by using such models to establish a link between a
particular malware family x and the malware family y that it is a
member of f: x 7 y. To categorize each malware family, CNN and
M-CNN DL models are trained. In order to achieve this, Malimg
dataset is used which made up of malware images that were
processed from malware binaries.

Keywords- artificial intelligence; artificial neural networks;
machine learning; malware classification; deep learning

I. INTRODUCTION

As long as it is regarded as any programmable device,
malware refers to any kind of malicious software that is
designed to harm a system or even a network. The reason for
this is that malware sometimes contains harmful executable
code that is capable of eradicating the system's default or
regular services and functions [1]. Cybercriminals typically
utilize malware to further their own individualized or collective
goals. Important information will be taken from victims for
nefarious purposes, such as gathering information for identity
theft by luring victims into providing it, gathering credit card or
other financial data, launching denial-of-service attacks against
other networks powered by controlled computers, and many
other things. These crucial details are typically presented in the
form of financial information, emails, passwords and even
healthcare records.

Researchers and security professionals were compelled by
the malware's growth to create new classification schemes to
separate these distinct varieties of malware, particularly in
terms of features. For the objective of classifying malware,
numerous classification techniques, including deep learning
and statistical analysis, have been developed. Deep learning

techniques use several kinds of multilayer networks that learn
representations at various degrees of abstraction [2].

This paper will concentrate on the investigation of deep
learning-based approaches for classifying Android malware. It
will be possible to undertake thorough analysis of the present
systems for categorizing Android malware by doing research
based on previously gathered material. This study will be able
to supplement earlier research by addressing some knowledge
gaps and introducing some fresh concerns to the field.

II. MALWARE FAMILY

Based on McAfee’s report, the malware application of
Android has increased to 22 million in 2017. The most
dominant mobile Operating System is Android as its market
leads by capturing 86% of the total market [5]. Symantec also
reported that every 1 of 5 Android applications can be
considered as malware. It is bold to assume that Android
application security has to play its crucial role especially for the
researchers in order to defend their users from malicious
malware developers.

A. AnserverBot

AnserverBot refers to an Android Trojan that has been
considered as one of the most complicated Android malware.
Usually it will piggyback on legitimate applications which are
currently being used in popular third-party Android especially
in China. It is worth paying attention to this Trojan in terms of
several aspects as it is developed with some complicated
techniques that are significant in evading analysis or even
detection. Furthermore, this malware program is active in
fetching commands from encrypted blog posts as it has built-in
bot functionality. Due to the matter of this fact, the bar for
reverse engineering analysis has been raised. In Android
malware history, AnserverBot has been known as the prime
malware that is able to apply the mentioned technique
efficiently integrated into one real-world instance.

33

B. DroidSheep

DroidSheep is known as a tool used for listening to network
traffic by threat actors. It allows them to gain specific access
into online accounts of numerous popular websites on the
internet. By running this malware, threat actors will be able to
impersonate victims' accounts thus accessing sites without
using a secure connection. It also allows threat actors to sniff
wireless network traffic which later benefits them in stealing
authentication tokens. As a result, the threat actors once again
will be able to impersonate the victim. However, the good news
is DroidSheep is unable to infiltrate current popular sites such
as Yahoo, Facebook and Google as long as it supports HTTPS
connections.

C. DroidKungFu

DroidKungFu refers to a malware that affects Android
Operating System which primarily targets the users in China.
This malware capables of evading current anti-virus software
thus rooting the vulnerable Android phones without any
problems [4]. It is noteworthy because DroidKungFu encrypts
two known roots which is Udev Exploit and
RageAgainsTheCage exploit in order to break the security
mechanisms. It will decrypt these two exploits before executing
them, which refers to launching an attack when it runs.
Repackaged applications have the attachment of DroidKungfu
inside it that is available in numerous alternative application
markets. As a result, a new service and a new receiver will be
added into the infected application. Later on, a notification
regarding the system state of booting will be sent to the receiver
so that the service can be launched without any user interactions
as the system finishes booting.

III. DEEP LEARNING

The multilayer networks that make up the deep learning
model are connected to various levels of abstraction when
learning data representations. [2]. Although the invention of
neural networks served as the foundation for the rise of deep
learning, several research have produced conflicting results
regarding how the two are related. Machine learning that is
based on neural networks is called deep learning. However,
there is a claim that deep learning is the sort of neural network
technology that is most frequently used.

Neural networks replicate the biological neurons that
communicate with the outside world [6]. Walter Pitts is a
logician, while Warren McCulloch is a neurophysiologist. Both
of them were inspired to propose the conceptual "M-P" neuron
model by the structure of biological neurons [7]. In a biological
neural network, the output values "0" or "1" denote the two
states of neuronal inhibition and activation. A neural network is
created by connecting several neurons together in a layered
structure. Neural networks are regarded as mathematical
models with many characteristics for use in macroscopic
mathematical computation. Neural network-based machine
learning falls into two primary groups. The first one is based on
the perceptron model [7]. Using a multilayer perceptron, one
can train a network to get the desired results while taking use of
the back propagation algorithm's mistake [9]. The Boltzmann
machine serves as the foundation for the second [10]. A neural
network at random that generates results according to
probability distribution.

A. Convolutional Neural Network

It has learnable parameters within the hidden layers of
neurons, such as inputs, performs a dot product, and exhibits
non-linearity, which makes it similar to feedforward neural
networks. These parameters will be sent to the neurons. The
entire network will represent the mapping between the
unprocessed image pixels (x R m) and the class grades (y, f: x
7 y). Based on the size of the layer inputs and outputs, the usage
of ReLU, and the use of the traditional Softmax function as a
network classifier, the design of this method is modified [11].

B. Gated Recurrent Unit

The vanishing gradient problem that occurs with a standard
recurrent neural network is the goal of the gated recurrent neural
network architecture [13]. Long short term memory (LSTM) is
a version of this since both designs are equally good at
producing results. To address the disappearing gradient issue, it
used update and reset gates. The information that should be sent
to the output will be determined by the two vectors. As an
illustration, the network architecture is built using a mix of a
support vector machine (SVM) and a form of a recurrent neural
network (RNN) as well as a gated recurrent unit (GRU) [12]. A
deeper understanding of the deep learning approach will be
gained by studying the behavior of this model.

C. Convolutional Neural Network

It is a neural network that resembles CNN and has a hidden
layer of perceptrons. However, the VGG-16 [14] is the
foundation of the model architecture. Every network starts with
a stack of convolutional layers, followed by three fully
connected layers with the same configuration, and then the soft-
max layer, which serves as the top-level layer. Every hidden
layer also has rectification non-linearity (ReLU) installed.

TABLE II. COMPARISON BETWEEN METHODS

Index
Referenc

e
Features Method Limitation

1 [17] Battery
Recurrent Neural
Network (RNN)

Difficult to
be trained

2 [18]
Grayscale

Image

Convolutional
Neural Network

(CNN)

Lack of
hidden
layers

3 [15]
Grayscale

Image
K-Nearest Neighbor

(KNN)
Memory
intensive

4 [19] API C4.5
Informatio
n entropy

5 [16]
Grayscale

Image

M-Convolutional
Neural Network

(M-CNN)

Need a lot
of data for

training

IV RESEARCH WORKFLOW

To compare the performance of CNN and M-CNN in
classifying Android malware, several phases and activities are
prepared to ensure the study is conducted systematically. The
research framework is divided into five phases which are firstly
about the research planning and initial study. The second phase
is data preprocessing followed by feature selection in the third
phase. The next phase is dedicated for the model development
before pursuing for the testing and evaluation on the last phase.
The performance measures of the classification technique is

34

used in this research as a measurement to compare both models
in classifying Android malware. The general research
framework is shown as in Fig.1.

Figure 9. Research framework

 A. Research Planning and Initial Study
The information acquired from the literature allowed for a

better understanding of the trends and tendencies in the study
field, which is essential to identifying the difficulties and
problems. As a result, research objectives and scopes could then
be determined. Setting the course of the research is the goal of
research objectives. There are three research aims in this study,
as was described in chapter one. Exploring the research field to
ensure that it is neither too large nor too tiny is known as the
research scope. The goals and parameters of this study are
discussed in chapter one of this documentation.

B. Data Preprocessing

To accomplish this research, a dataset is required in order to
evaluate the model in classifying features. The dataset will be

used which consists of malware and non-malware samples. The
binary form of the samples will be processed to grayscale
images. It is created through the reading of malware binaries
into an 8-bit unsigned integer composing a matrix of M ϵ Rm×n.
The matrix will be visualized in a grayscale image form which
has a range of values [0,255]. From the grayscale image, Black
color can be interpreted as 0 while white color as 1. Data
preprocessing is significant in order to obtain maximum
efficiency in malware analysis. It is because the raw data will
be unable to support machine learning [20].

Figure 10. Conversion of binary file to grayscale image

The malware images were rescaled to a 2-dimensional
matrix and then compressed into a n x n-size array, yielding a 1
x 1024-size array [21]. The indexed malware family name was
labeled to each of the feature arrays that corresponded to it. The
features were then standardized using Eq.1.

 (1)

Where μ refers to the mean value, σ is the standard deviation
and is its feature to be standardized. Although the dataset is
made up entirely of images, and standardization may not be
appropriate for such data, keep in mind that the images are taken
from malware binary files. As a result, the features aren't
actually images to be started with.

C. Feature Selection

The feature selection is a well-known way in order to reduce
the dimension of the dataset. By removing the unnecessary and
redundant features, the number of features can be limited which
is giving a positive impact towards the dataset. Hence, the
performance of generalization and operational efficiency can be
improved by selecting an optimal subset of features. In general,
the steps of feature selection can be divided into generation,
evaluation, stopping criterion and validation [22].

Features can be analyzed and summarized according to
three common categories which are static features, dynamic
features and hybrid features. Most of the time, it depends on
whether they are acquired by running an Android application or
not [23]. By doing selection on the dataset, all of the selected
features are in the form of grayscale images. It can be classified
into the category of static features. In terms of static features, it
refers to features that can be generated through the process of
code analysis [24]. Usually, researchers will select either
permissions, API call, opcode sequence or function call graphs

35

as features. The permission features are the best single predictor
of the application malignity [25]. However, the combination of
visualization-based analysis and deep learning have provided a
great impact in the research field related to privacy and security
lately [26]. Most of the proposed solutions are able to achieve
high accuracy against windows malware classification [17]. As
a result, this research will validate the classification of Android
malware using grayscale images.

D. Model Development

Convolutional Neural Network (CNN) consists of hidden
layers of neurons with specific parameters that can be learned
such as inputs, dot product and non-linearity. The whole
network can be expressed as mapping between raw image
pixels x ϵ Rm and class scores y, f : x 7→ y. The modification
on the architecture of this method is made based on the size of
layer inputs and outputs, the use of ReLU with conventional
Softmax function as network classifier [11].

E. Testing and Evaluation

The performance metrics can be obtained by referring to
typical binary classification which refers to the results of a
prediction that can be divided into four types which are false
positive, true positive, false negative, and true negative [27].
False negative can be an indicator of the incorrect prediction
number in a recurrent malware class while true negative
indicates the correct prediction number in a recurrent malware
class. Next, false positive will be referred to as the incorrect
prediction number in a primary malware class while true
positive refers to the correct prediction number in a primary
malware class. The performance of the model was evaluated by
using some important variables such as accuracy, precision and
recall.

The most important performance metrics are precision and
recall. However, both of them only provide a partial evaluation.
It is because precision will represent the ratio of all samples
correctly predicted to be positive among all samples predicted
to be positive while recall will represent the ratio of all positive
samples correctly predicted among all positive samples.

 (2)

 (3)

V. EXPERIMENT DESIGN

The experimental design starts with data preprocessing
where the data were rescaled, compressed before generating it
into desired output for analysis. Next step is generating the
dataset from Google Drive directory followed by standardizing
target size and batch size of the dataset. Quick analysis was
made in order to evaluate the dataset according to its classes.
Furthermore, the generated batches were split between training
and testing. Lastly, the testing and evaluation phase is where the
performance measures of both models are compared in terms of
classifying malware. All methodology steps below are done
using Python programming language in the Google
Colaboratory environment. The experiment workflow is shown
as in Fig.3.

Figure 11. Experiment workflow

All experiments in this study were conducted on a laptop
computer with Intel® Core™ i5-7300HQ CPU @ 2.50GHz,
4GB of DDR4 RAM and NVIDIA GeForce GTX 1050. Table
II shows the hyper-parameters used by the models in the
conducted experiments.

 The Malimg dataset was generated by using the
ImageDateGenerator () from Keras that allows to perform
image augmentation. It was done by producing batches of
normalized tensor image data from the respective malware
families. All images were resized to the specified size of 224 x
224 x 3 and the batch size that was selected is 1000. The list of
generated malware is shown in Fig.4.

Figure 12. List of malware classes

As the 25 different classes of malware are recognized, the
dataset is evaluated using the Matplotlib from Python. The
classes of malware generated through the batches of grayscale
images. The percentage of malware classes obtained through
the sum of labels over the number of label’s dimensions in
array. The horizontal axis represents the independent variable
which is the malware class. Meanwhile, the vertical axis

36

represented the percentage of malware class. The bar graph
formed from the percentage of malware classes is shown in
Fig.5.

Figure 13. Percentage of malware classes

According to the Fig.5, the dataset is in an unbalanced state.
It is because there are more than 30% images belonging to class
2 which refers to Allaple.A and 17% images belonging to class
3 which refers to Allaple.L. Table II shows the hyper-
parameters used by both models in the conducted experiments.

TABLE II. HYPER-PARAMETERS USED IN BOTH MODELS

Hyper-parameters CNN M-CNN

Batch Size 1000 1000

No. of Hidden Layers 2 5

Epochs 10 10

The Malimg dataset is split into training and testing datasets
as the initial stage before training the model. All of the models
underwent 10-epoch training on 6537 malware family variants
(6400 mod 256 = 0), which made up about ≈70% of the
preprocessed dataset. However, only ≈30% of the preprocessed
dataset which refers to 2560 malware family types (2560 mod
256 = 0) was used to test the models over the course of 10
epochs. Using the classification_report() function of
sklearn.metrics, the classification measures accuracy,
precision, and recall were all calculated [28]. The experiment
findings for the models that were given are compiled in Table
III.

TABLE III. PARAMETERS USED IN BOTH MODELS

Variables CNN M-CNN

Accuracy 43.33% 50.00%

Precision 0.24 0.27

Recall 0.43 0.50

Figure 14. Confusion matrix of CNN

Figure 15. Confusion matrix of M-CNN

Table III shows the testing performance of CNN and M-
CNN models in multinomial classification on malware classes.
M-CNN had a test accuracy of ≈50.00%, a precision of 0.27 and
a recall of 0.50. The table also shows the testing performance
of CNN having a test accuracy of ≈43.33%, a precision of 0.24
and a recall of 0.43. All the models scored higher for Allaple.A
which is the malware with the greatest number of variants, as
can be seen in the confusion matrices. In this instance, it might
be because relative populations of each malware family were
not taken into account when data partitioning was used to
separate the dataset into training and testing data.

However the Allaple.A is frequently mistaken for the
Allaple.L. In actuality, they both had worm-type backgrounds
and had the same trait. As a result, there might have been
similarities in their code. The Fakerean, on the other hand, has
consistently been mislabeled as a Yuner.A. It's because the
dataset only contains a small number of examples of Fakerean.
Additionally, these malwares share a Trojan-type background,
which is where they both originated.

VI. DISCUSSION

It is noticeable that the M-CNN model stands out more
compared to CNN model presented in this study. This finding
comes as no surprise as the M-CNN is constructed with
relatively the most sophisticated architecture design among the
presented model. Particularly, it is because of its 5-layer design.
In terms of neural networks, the number of layers residing is
directly proportional to the complexity of a function it can
portray [29]. In a specific way, the performance of a neural
network is directly proportional to the number of its hidden
layers. This logic describes the hypothesis which is the less
number of hidden layers that a neural network possesses, the

37

less its performance is. As a result, the findings in this study
supported the literature explanation as the CNN came second
(≈43.33% test accuracy) with a 2-layer design.

According to the results in Table III, the test accuracy
of≈50.00% clearly shows that the M-CNN model has the
highest predictive performance compared to the CNN. As a
matter of fact, M-CNN has a more complex design compared
to its rival. Firstly, it consists of 5-layer design that lets it
perform complex mappings between features and labels.
Secondly, it has the capabilities in learning from data of
sequential nature especially for which an image data belongs.
Thirdly, all hidden layers are equipped with the rectification
non-linearity as its model architecture is based on VGG-16
[14]. As a result, it had longer computing time compared to
CNN as it had more non-linearities introduced in its design. The
CNN model might be able to improve its predictive
performance by adding more hidden layers and better non-
linearities to the architectural design. Thus, the complexity will
be able to support the model to be on par with the M-CNN
model.

VII. CONCLUSION

The research is an exercise to explore the model
performance of CNN and M-CNN in classifying malware from
25 different classes in the Malimg dataset. Further research is
needed to come out with valid and promising models and
results. Based on the results achieved from Table III, it shows
that M-CNN model had the higher predictive accuracy
compared to CNN model, having a test accuracy of ≈50.00%.
There are several that can be made in order to improve the
outcomes in the future. Since the accuracy of M-CNN
outperforms CNN, the architecture design of CNN may provide
greater insights on malware classification by adding more
hidden layers, improving non-linearities and employing an
optimal dropout. Such ideas in improving the architecture
design of the models may give an idea on which architecture
will serve best in the engineering of adaptive anti-malware
systems [12].

ACKNOWLEDGMENT

We would like to express our sincere gratitude to Faculty of
Computing and Universiti Teknologi Malaysia (UTM) for
their invaluable support and resources, which played a
crucial role in the successful research.

REFERENCES

[1] M. Sikorski, and A. Honig, Practical Malware Analysis: The Hands-On

Guide to Dissecting Malicious Software. San Francisco, CA, USA: No
Starch Press, 2012.

[2] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521,
no. 7553, pp. 436-444, May 2015.

[3] Lakshmanan Nataraj, S Karthikeyan, Gregoire Jacob, and BS Manjunath.
2011. Malware images: visualization and automatic classification. In
Proceedings of the 8th international symposium on visualization for cyber
security. ACM, 4.

[4] Isohara, T.; Takemori, K.; Kubota, A. Kernel-based behavior analysis for
android malware detection.

[5] Gartner Says Worldwide Sales of Smartphones Recorded First, Ever
Decline During the Fourth Quarter of 2017. Available

online:https://www.gartner.com/newsroom/id/3859963 (accessed on 1
April 2018).

[6] T. Kohonen, “An introduction to neural computing,” Neural Netw., vol.
1, no. 1, pp. 3-16, Jan. 1988.

[7] W. S. Mcculloch, and W. H. Pitts, “A logical calculus of the ideas
immanent in nervous activity,” Bull. of Math. Biol., vol. 5, pp. 115-133,
Dec. 1943.

[8] D. O. Hebb, The Organization of Behavior-A Neuropsychological
Theory. Hoboken, NJ, USA: John Willey and Sons Inc., 1949.

[9] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, Learning Internal
Representations By Error Propagation. Cambridge, MA, USA: MIT
Press, 1988.

[10] N. L. Roux, and Y. Bengio, “Representational power of restricted
boltzmann machines and deep belief networks,” Neural Comput., vol. 20,
no. 6, pp. 1631-1649, Jun. 2008.

[11] Yichuan Tang. 2013. Deep learning using linear support vector machines.
arXiv preprint arXiv:1306.0239 (2013).

[12] Abien Fred Agarap. 2017. A Neural Network Architecture Combining
Gated Recurrent Unit (GRU) and Support Vector Machine (SVM) for
Intrusion Detection in Network Traffic Data. arXiv preprint
arXiv:1709.03082 (2017).

[13] J. Y. Kim, S. J. Bu, and S. B. Cho, “Zero-day malware detection using
transferred generative adversarial networks based on deep autoencoders,”
Inf. Sci. (Ny)., vol. 460–461, pp. 83–102, 2018

[14] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv preprint arXiv:1409.1556,2014.

[15] J. Yan, Y. Qi, and Q. Rao, “Detecting malware with an ensemble method
based on deep neural network,” Secur. and Commun. Netw., vol. 2018,
pp. 7247095(16pp), Mar. 2018.

[16] M. Kalash, M. Rochan, N. Mohammed, N. D. B. Bruce, Y. Wang and F.
Iqbal, "Malware Classification with Deep Convolutional Neural
Networks,"2018 9th IFIP International Conference on New Technologies,
Mobility and Security (NTMS), 2018, pp. 1-5, doi:
10.1109/NTMS.2018.8328749.

[17] Vinayakumar, R.; Soman, K.; Poornachandran, P.; Sachin Kumar, S.
Detecting Android malware using long short-term memory (LSTM). J.
Intell. Fuzzy Syst. 2018, 34, 1277–1288.

[18] Ahmed Lekssays, Bouchaib Falah, Sameer Abufardeh. A Novel
Approach for Android Malware Detection and Classification using
Convolutional Neural Networks. ICSOFT 2020: 606-614.

[19] Z. Yuan, Y. Lu, Z. Wang, and Y. Xue, “Droid-sec: deep learning in
Android malware detection,” in Proc. 2014 ACM Conf. SIGCOMM,
Chicago, Illinois, USA, 2014, pp.371-372.

[20] K. Kobkul, C. Gareth, and M. Phayung, “A hybrid system based on a
multi-agent system in the data preprocessing stage,” Int. J. of Comput.
Sci. and Inf. Secur., vol. 7, no. 2, pp. 199-202, Feb. 2010.

[21] Felan Carlo C. Garcia and Felix P. Muga II. 2016. Random Forest for
Malware Classification.

[22] M. Dash, and H. Liu, “Feature selection for classification,” Intell. Data
Anal., vol. 1, pp. 131-156, Mar. 1997.

[23] A. Qamar, A. Karim, and V. Chang, “Mobile malware attacks: review,
taxonomy & future directions,” Future Gener. Comput. Syst., vol. 97, pp.
887-909, Aug. 2019.

[24] B. Amro, “Malware detection techniques for mobile devices,” Int. J. of
Mobile Netw. Commun. & Telematics, vol. 7, no. 4/5/6, pp. 1-10, Dec.
2017.

[25] S. Hahn, M. Protsenko, and T. Muller, “Comparative evaluation of
machine learning-based malware detection on Android,” in Lecture Notes
in Informatics Sicherheit 2016-Sicherheit, Schutz und Zuverlässigkeit. M.
Meier, D. Reinhardt, and S. Wendzel, Eds. 2016, pp. 77-88.

[26] Kasongo, S.M.; Sun, Y. A deep learning method with wrapper based
feature extraction for wireless intrusion detection systems. Computer
Security 2020, 92, 10172.

[27] E. P. Costa, A. C. Lorena, A. C. P. L. F. Carvalho, and A. A. Freitas, “A
review of performance evaluation measures for hierarchical classifiers,”
presented at 22nd Nat. Conf. Artif. Intell., Vancouver, British Columbia,
Canada, Jul. 22-26, 2007.

[28] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O.
Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas,
A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay.
2011. Scikit-learn: Machine Learning in Python. Journal of Machine
Learning Research 12 (2011), 2825–2830.

[29] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. 2016. Deep
Learning. MIT Press. http://www.deeplearningbook.org.

