
 eISSN No. : 2976-2278

57

UTM Computing Proceedings

Innovations in Computing Technology and Applications
Volume: 6 | Year: 2024 | ISBN No. : 2976-2278

A Comparative Study of Homomorphic Encryptions:

Analyzing RSA and Paillier Performance for Data
Security in Cloud Computing

Intan Syazriena Mohd Shahidon and Marina Md Arshad
Faculty of Computing

Universiti Teknologi Malaysia
81310 UTM Johor Bahru, Malaysia

isyazriena2@graduate.utm.my, marinama@utm.my

Abstract— In the 21st century, scientific computing has shifted
from a fixed to a distributed work environment. Current trends in
Cloud Computing (CC) enable access to corporate applications
from any Internet-connected location. However, there are a
number of obstacles that accompany the numerous benefits of CC.
The main hitch of organizations to use CC is data security.
Especially in the cloud context, when data is dispersed around the
globe, this problem becomes significant. Encryption has emerged
as a solution, and various encryption methods play a crucial part
in cloud data security. The objective of data security is to restrict
access to only relevant and authorized users. This thesis purpose
is to compare and evaluate between two different encryption
algorithms’ performance which are RSA and Paillier in terms of
key generation time, encryption and decryption time, memory
utilization, throughput and file transfer time in a cloud
environment. Research is conducted using the GoCJ dataset. The
encryption development of both algorithms is done using Java
programming language. CloudSim is used for cloud simulation
tool where data will be uploaded and downloaded, and the size of
files and time taken will be documented. Lastly, the key generation
time, encryption and decryption time, memory utilization,
throughput as well as encryption file transfer time for each
algorithm are compared and discussed. The research result will
show the best encryption algorithm among RSA and Paillier in CC
security.

Keywords — Encryption Algorithm, Cloud Computing, RSA,
Paillier, Homomorphic Encryption

I. INTRODUCTION

CC offers clients a pool of resources and services in exchange
for payment on a per-use basis. According to the National
Institute of Standards and Technology (NIST), CC is an
architecture that permits ubiquitous, accessible, on-demand
network access to a shared pool of configurable computing
resources that can be promptly supplied and released with

minimal administration effort or service provider engagement
[1]. Furthermore, the five main characteristics of CC were
described as self-service on demand, wide network access,
resource pooling, instant adaptability, and metered service.
Unfortunately, cloud services also provide greater opportunity
for hackers to gain access to sensitive information and violate
privacy. Larry Ponemon, president of the data privacy research
from Ponemon Institute, stated that encryption technology is
unquestionably important for ensuring the security of network
traffic [2]. To ensure the security of data, cryptographic
techniques are used to protect information and communication
and can be applied in the cloud environment.

Many security difficulties and dangers arise because CSP
maintains DC in geographically distributed locations, making it
difficult for end users to know where their data resides. CC is
accompanied by a number of security problems, including
access control, identity authentication, risk management,
auditing and recording, integrity control, infrastructure
concerns, and dependent hazards [3]. Due to the widespread
availability and accessibility of cloud services, the chance of
sensitive data slipping into the hands of the wrong people
grows. In addition, the expansion of huge data, which must be
evaluated, increases the difficulty of decryption. The basic
objective of securing what is referred to as digital assets is to
reduce or eliminate the potential that these assets would be
illegally exposed or abused, given that these assets may be
susceptible to external threats [4]. Companies cannot take
chances with their critical data. To ensure that cloud-based
services deliver not only outstanding quality but also high
security features, its encryption mechanism and communication
path must comply with the requirements.

To this day, one of the encryption methods that is utilized
most frequently is known as RSA [5]. The explanation for this
is that it is easy to comprehend, straightforward, and did not
demand a significant amount of difficulty to decrypt. A brute

58

force attack has been up to now the only method available for
forcibly decrypting encrypted data generated by the RSA
algorithm. Aside from that, the difficulty of decryption
increases proportionally with the length of the key that is
generated by the RSA algorithm. Paillier encryption, on the
other hand, was developed by Pascal Paillier in 1999, is another
frequently utilized encryption method, particularly noteworthy
for its unique property of homomorphic encryption [6]. The
Paillier encryption scheme is asymmetric and relies on the
hardness of certain problems in number theory for its security.
Like RSA, the strength of the encryption grows with the key
size, making brute force attacks infeasible. Its homomorphic
properties often make it a more suitable choice for applications
requiring privacy-preserving computations [7].

Therefore, this research proposed to compare the
performance on the cloud security implementation of Paillier
and RSA algorithms for data encryption. This project will
implement both techniques in Java that encrypt data at the client
side after it has been uploaded to a cloud server, providing an
additional layer of data security. The performance of the
algorithms will be measured with text files ranging in size from
21 bytes to 413 bytes that are based on the analysis of Google
cluster traces. CloudSim cloud simulation tool will be utilized
to facilitate the modelling of CC environment for file transfer
simulation. Key generation time, encryption and decryption
time, memory utilization, throughput and file transfer time on a
cloud environment will be analyzed and evaluated to decide
whether Paillier or RSA algorithms are better for securing the
cloud data.

II. LITERATURE REVIEW

To lay the groundwork for this research, an examination of
current literature is undertaken. This includes an investigation
into the current state of CC frameworks, their corresponding
vulnerabilities, security challenges, and encryption algorithms.
Through this methodology, we aim to gain a more
comprehensive understanding of the intricacies involved in the
implementation of CC and encryption algorithms.

A. Cloud Computing Background and Framework

CC is an evolving kind of IT service in which DC operations
are offered as a service. This technology is motivated by the
emergence of large-scale, resource DCs developed in low-cost
locations. The NIST in the USA defines CC as "A framework
for enabling ubiquitous, accessible, on-demand access to a
shared pool of configurable computing resources that may be
delivered and released with minimal administrative effort or
service provider engagement." [1]. This description makes it
apparent that CC minimizes an organization's expenditures on
resource management and lessens the user's obligation of
software and hardware maintenance. When the burden is
lessened, the organization spends less money and time on
infrastructure management, and the time saved can be
employed for creative pursuits [8]. This is a major advantage
for users and businesses, since it often provides convenience
and also enhances company performance by decreasing the
time spent on infrastructure.

CC's architecture has been described by a variety of
organizations and researchers. The totality of the architecture
can be split down into its most fundamental components: the
core stack and the management stack. The core stack consists
of three layers: Application, Resource, and Platform [9]. The
infrastructure layer comprising of physical and virtualized
computing, memory and networking resources is the resource
layer. This layer resides underneath the application layer. The
platform layer seems to be the most complex component and
can be subdivided into numerous layers. For instance, a
computing framework is responsible for the dispatching and/or
scheduling of transactions and/or tasks. A storage sub-layer
allows you to store an infinite quantity of data. The entire
system will not be slowed down by a single component because
the application server and the other components provide the
same application logic as previously and have either an on-
demand functionality or flexible administration [9]. Fig. 1
depicts the architecture of CC.

Fig. 1. Cloud computing architecture

B. Cloud Computing Vulnerabilities

When preparing to shift to a CC environment, there are a
variety of key vulnerabilities that should be taken into
consideration. Using a legitimate session key to obtain
unauthorized entry to a computer system's data or services is
referred to as session hijacking. This also relates to the stealing
of a cookie used for remote server authentication [10]. It refers
to vulnerabilities in web application structures, which allow
hackers to engage in a variety of destructive behaviors. In
session riding, hackers send orders to a web service on behalf
of a user by tricking them into surfing the net or opening an
email. Session riding deletes user information, conducts online
transactions such as bids and orders, transmits spam to an
intranet system via the internet, modifies system and web
settings, and breaches the firewall [11].

As the primary methods for hacking cryptographic
mechanisms and algorithms are known, attackers will be able
to decode any cryptographic mechanism or algorithm. It is

59

common to identify vulnerabilities in cryptographic algorithm
implementations. In severe circumstances, these flaws can
result in no encryption at all [10]. In cloud virtualization, for
instance, service providers employ virtualization software to
divide servers into images, which are then made available to
consumers as demand-based services [12]. Even if the use of
Virtual Machines (VMs) within the DC of cloud providers
offers a more convenient and dynamic setup than the use of
traditional servers, these VMs do not have sufficient access to
generate random numbers necessary for appropriate encryption
of data [13].

C. Cloud Computing Security Challenges

Most security threats emerge from within an organization
[14]. Given that cloud services are based on a multi-tenant
model governed by a central management domain, this problem
is complicated for cloud service users. Typically, organizations
who subscribe to cloud services lack visibility into the
provider's recruiting practices, data storage in multiple
locations, and interactions with third-party vendors. Customers
of cloud providers are frequently unaware of the hiring
standards and procedures for cloud staff [15]. From the vantage
point of industrial espionage, the casual attacker, or malicious
insiders, this state and fact can give space for enemies.
Unrestrictedly, a third-party vendor for the provider can obtain
sensitive information and sell it to the victim's competitors.

External threats are amongst the most frightening concerns
for any corporation since they directly entail the disclosure of
sensitive data or the likely defacement of the organization[14].
This is also a recurring issue in Cloud technology, as Clouds
are more interlinked than private networks and have many more
interfaces to allow authorized users access data. Hackers and
attackers take use of this reality by targeting Application
Programming Interface (API) [16] weaknesses, connection
tapping or breaching in, and through social engineering.

Organizations expect the same level of data integrity and
security when migrating data to the Cloud as they did with on-
premises storage. Since Clouds are multi-tenant settings [17],
[18] and authentication process may not be at the exact level as
on-premises, it is required to prevent unwanted access to
sensitive data [19]. This is not as straightforward as it may look,
as data loss and leakage can cause monetary, reputational, and
consumer harm to the organization. The removal or alteration
of data without a copy of the original content is an apparent
example. Insufficient authentication, authorization, and internal
control, unreliable usage of encryption and encryption keys,
equipment breakdown, political pressures, and DC
dependability are the most direct and indirect causes of data
loss.

When organizations shift information or services to the
internet, consumers are ignorant of their location [15], [13]
because the supplier may host them anywhere within the Cloud.
This is a major concern from the user's perspective, as firms
lose control of their valuable information and are uninformed
of any security precautions performed by the supplier [13].

D. Encryption Algorithms

In this research, Partially Homomorphic Encryption (PHE)
algorithms is utilized in performance analysis of encryption
algorithms for the security of data in CC. The performance of
encryption algorithms are measured by their effiency, time and
space complexity. Therefore, PHE algorithms are chosen
because it allows computations to be performed directly on
encrypted data, protecting the data's privacy during cloud
processing.

1) RSA
The RSA algorithm was introduced in 1978 by Rivest,

Shamir, and Adleman [20]. Since its inception, it has dominated
as the most commonly used and accepted method for public-
key encryption [20]. Furthermore, the RSA scheme possesses
multiplicatively homomorphic properties [21]. RSA algorithm
is depicted as in Fig. 2.

Fig. 2. RSA algorithm

2) Paillier

The Paillier algorithm, a probabilistic public-key scheme,
was invented by French researcher Pascal Paillier in 1999 [20].
Characterized by an additive homomorphic property, it is
perceived as an extension of the Okamoto-Uchiyama. Its
innovation is evidenced under the Decisional Composite
Residuality Assumption (DCRA) [21]. Fig. 3 shows the Paillier
algoritm.

60

Fig. 3. Paillier algorithm

III. DATASET

The dataset employed in this study is the GoCJ dataset [27].
The primary reason for selecting this dataset is its public
accessibility and authenticity, which is designed to inspire other
researchers by providing a reliable, open-source benchmark for
application comparison. Each file in this dataset comprises a
specific number of rows, with each row signifying the MI size
of a given job. The GoCJ dataset stands out as a superior choice
for this investigation due to its thorough filtration and analysis,
making it highly dependable for performance evaluation and
assessment within the cloud research community [28]. For the
purposes of this study, the text files extracted from this
generated dataset will be utilized.

IV. FRAMEWORK FOR ENCRYPTION

ALGORITHMS PERFORMANCE ANALYSIS

This research is structured into three distinct phases. The
initial phase involves a comprehensive review and exploration
of various techniques and characteristics, coupled with data
collection. The subsequent phase pivots towards the execution
of selected encryption algorithms and the simulation of cloud
environment. The final phase is dedicated to analyzing and
discussing the outcomes derived from the study.

A. Phase 1: Review of CC Issues, Security Algorithms and
Selection of Attributes

The focus of this phase is on studying and reviewing CC
challenges and encryption algorithms for the security of data in
CC. Specifically, this involves conducting a thorough literature

review to understand the existing data security threats in CC.
Algorithms properties and analysis of different encryption
algorithms are evaluated and two different algorithms, namely
RSA and Paillier are identified.

Selection of attributes involves running the GoCJ generator,
for creating the result of specific lines of jobs to creating the
required dataset. This is initiated by entering an input, which
acts as a command indicating the line of job sizes required for
the text files. Specifically, the values 15, 25, 35, 45, and 55 are
inputted into the generator. These inputs guide the generator to
create five distinct results of lines of jobs sizes. The second part
of the refinement process focuses on creating smaller lines to
complete the dataset. To do this, the value 3 is inputted into the
GoCJ generator, which results in the creation of a smaller file
that is 21 bytes in size. This completes the dataset creation and
provides us with a suitable variety of file sizes to effectively
assess and compare the performance of various encryption
algorithms.

B. Phase 2:Development of Encryption Algorithms Model
and Cloud Environment

1) RSA

This phase involves the development of an RSA
encryption model, featuring two simulated entities
which are the User and the RSAFileEncryption. The
User inputs the data file path for processing and triggers
the required functions, while RSAFileEncryption runs
these functions. Key generation, encryption, and
decryption are the three key functions of the RSA
model. Key generation, performed using Java's Big
Integer class, uses a variety bit-key sizes, specifically
256, 512, 1024, 2048 and 4096 to encrypt and decrypt
six text files of varying sizes ranging from 21 to 413
bytes. The encryption process converts the plaintext
message into an integer, then encrypts it using the
public key, which consists of Big Integer 'e' and 'n'. The
Big Integer class's modPow(e, n) function facilitates
this. The decryption process is carried out immediately
afterward, utilizing the modPow function of the Big
Integer class in Java, which performs modular
exponentiation to reverse the encryption process and
returns the original plaintext form of the message. RSA
encryption model development is visualized in a
sequence diagram as Fig. 4.

61

Fig. 4. RSA model sequential diagram

2) Paillier

The development of the Paillier encryption model
for research and experimentation, similar to the RSA
model, involves two main entities and three key
functions which are the key generation, encryption, and
decryption processes. The key generation is also set
with various bit-key lengths of 256, 512, 1024, 2048
and 4096, identical to the RSA experiment, and used to
encrypt and decrypt text files of varying sizes. This
model leverages the Big Integer class in Java to
facilitate operations. In the encryption phase, the
plaintext message is transformed into a ciphertext using
the public key components generated earlier. For
decryption, the ciphertext is reverted back to the
original plaintext form using the private key
components. These three operations - key generation,
encryption, and decryption - are the main functional
elements used to evaluate the Paillier encryption
model's performance in handling text files of different
sizes. As depicted in Fig. 5 is the sequence diagram of
the development of Paillier encryption algorithm
model.

Fig. 5. Paillier model sequential diagram

3) CloudSim

The CloudSim model in this development operates
through a range of entities such as the client, datacenter,
VMs, cloudlets, and a broker, to simulate a cloud
environment. The datacenter functions as the cloud
service provider, offering infrastructure that houses
host systems with processors, storage devices, and
memory, which are abstracted and provided as cloud
services. VMs, created and registered with a Datacenter
Broker, perform file upload operations. The
development process begins by initializing the
CloudSim package, creating a datacenter with specific
characteristics, and setting up a Datacenter Broker.
Then, VMs are created and submitted to the broker, and
cloudlets, simulating file uploads, are created and also
submitted to the broker. Once the simulation runs and
is completed, executed cloudlets details such as ID,
status, data center ID, VM ID, execution time, start
time, and finish time, are retrieved and printed. Host
creation and datacenter characteristics are defined in
the CloudSim framework, as well as the attributes of
the VMs and parameters for cloudlets creation. Fig. 6
illustrates the cloud simulation process used in the
development.

Fig. 6. CloudSim model

4) Deteministic vs.
Probabilistic Algorithm

The RSA algorithm, in its deterministic nature,
employs the Key Generation method where 'p' and 'q'
are large prime numbers used to compute 'n' which is
part of the public key. The public exponent 'e' is another
part of the public key which is predefined in the code.
The Encryption method implements the RSA
encryption formula utilizing these predetermined
values. Conversely, the Paillier encryption algorithm,
being probabilistic, uses a setPublicKey method to
initialize 'n', 'g', 'nsquare', and the 'bitLength'. These
values are predetermined and, along with a randomly
generated number 'r' in the Encryption method, are used

62

to ensure different results for each encryption,
contributing to the algorithm's probabilistic nature.

C. Phase 3: Evaluate and Validate RSA and Paillier
Encryption Algoritms Performance

The assessment of RSA and Paillier homomorphic
asymmetric encryption algorithms is carried out based on
selected parameters such as key generation time, encryption
and decryption duration, memory consumption, throughput,
and the time required for file transfer in a cloud environment.

The experimental procedures are executed on a 12th Gen
Intel (R) Core (TM) i5-1235U processor clocked at 1.30Ghz,
complemented with an 8.00GB RAM. The system operates on
Windows 11 Home, version 22H2, with Java language running
on Eclipse IDE version 4.28.0 used for obtaining the
algorithm's experimental outcomes. The encryption models are
executed 10 times [22] and the average result is discussed,
yielding the results delineated in Tables I-VIII.

TABLE I. RSA AND PAILLIER AEVRAGE KEY GENERATION TIME
(IN MILLISECONDS)

Metho
d

Key Size
256 512 1024 2048 4096

RSA 53.3 71 139.7 177.9 955
Paillier 45.9 79.9 140.7 195.1 894.8

TABLE II. RSA AND PAILLIER AVERAGE ENCRYPTION TIME (IN
MILLISECONDS)

Metho
d

File Size
108 187 257 333 413

RSA 12.3 12.1 14.4 12.9 12.1
Paillier 108.1 117.4 132 144.3 158.2

TABLE III. RSA AND PAILLIER AVERAGE DECRYPTION TIME (IN
MILLISECONDS)

Metho
d

File Size
108 187 257 333 413

RSA 22.4 22.3 23.8 22.6 22.4
Paillier 180.8 180.1 180.9 179.2 184.5

TABLE IV. CIPHERTEXT MEMORY UTILIZATION WITH VARIABLE
KEY-SIZE (IN BYTES)

Metho
d

Key Size
256 512 1024 2048 4096

RSA 88 120 184 312 568
Paillier 120 184 312 568 1080

TABLE V. CIPHERTEXT MEMORY UTILIZATION WITH VARIABLE
FILE SIZE (IN BYTES)

Metho
d

File Size
108 187 257 333 413

RSA 568 568 568 568 568
Paillier 1080 1080 1080 1080 1080

TABLE VI. RSA AND PAILLIER AVERAGE ENCRYPTION
THROUGHPUT (IN BYTES PER SECOND)

Metho
d

File Size
108 187 257 333 413

RSA 42055 42533 38572.
4

40317.
9

39529.
1

Paillier 9475.4 8775.6 7790 7118.4 6478.3

TABLE VII. RSA AND PAILLIER AVERAGE DECRYPTION
THROUGHPUT (IN BYTES PER SECOND)

Metho
d

File Size
108 187 257 333 413

RSA 4830.9 8395.7 11066.
6

14763.
3

18466.
1

Paillier 597.4 1041.5 1421.3 1869.6 2259.4

TABLE VIII. RSA AND PAILLIER FILE TRANSFER TIME (IN
MILLISECONDS)

Metho
d

Key Size
256 512 1024 2048 4096

RSA 0.11 0.22 0.26 0.51 1.02
Paillier 0.22 0.25 0.51 1.02 2.05

V. RESULT ANALYSIS

After examining the characteristics of the chosen algorithms
and analysing the results described in the tables, the following
conclusions were obtained:

● Key generation time: Based on Table I, RSA follows
a linear trend, while Paillier initially outperforms RSA
for smaller keys but becomes slower for larger ones.
Additional steps in Paillier's key generation contribute
to the increased time compared to RSA. Overall, both
methods show increasing key generation times with
larger key sizes.

● Encryption and decryption time: Based on Table II and
Table III, RSA outperforms Paillier in both encryption
and decryption times, based on the observed results.
This can be attributed to Paillier's more complex
process involving exponentiation and multiplication
operations under a larger modulus, and the need for
random 'r' to be coprime with 'n', which demands
additional computational effort. Furthermore,
Paillier's decryption process includes more
complicated steps such as modular exponentiation,
division, and multiplication, increasing complexity
compared to RSA's simple modular exponentiation
approach.

● Ciphertext memory utilization: Based on Table IV and
Table V, RSA has a more efficient memory usage than
Paillier, as the latter's ciphertext falls within the set of
integers modulo n², resulting in larger ciphertexts and
thus requiring more storage. Regardless of the
plaintext's size, the memory used for encryption stays
constant - it's determined by the key size, not the
plaintext size [20]. Hence, Paillier's larger key size
increases memory demands.

63

● Encryption and Decryption Throughput: Based on
Table VI and Table VII, When evaluating encryption
and decryption throughput, RSA outperforms Paillier.
This is because RSA's faster encryption and
decryption times allow more data to be processed in a
given timeframe, resulting in a higher throughput.
Despite both algorithms operating on the same file
size, the quicker speed of RSA means it processes
more bytes per millisecond compared to Paillier.

● File transfer time: Based on Table VIII, RSA
demonstrates superior performance over Paillier in file
transfer time due to its smaller ciphertext size, leading
to faster transfers. Conversely, Paillier's ciphertexts
are roughly double the size of n, producing larger
encrypted files that take more time to transfer,
particularly on bandwidth-limited networks.

In conclusion, considering the performance metrics used in
this comparison, RSA appears to offer a superior overall
performance than the Paillier system. However, the choice of
an encryption algorithm shouldn't be made based on these
metrics alone. Other key factors must be taken into account
such as the homomorphic properties where RSA is a
multiplicative and Paillier is additive. Moreover, the nature of
the encryption process, whether deterministic or probabilistic,
also plays a vital role. Paillier, as a probabilistic encryption
algorithm, can generate different ciphertexts for the same
plaintext when encrypted with the same key, offering an
additional layer of security. Conversely, RSA, being
deterministic, will consistently produce the same ciphertext for
a particular plaintext when encrypted with the same key.

VI. SUGGESTIONS FOR IMPROVEMENT

AND FUTURE WORKS

This study compares two CC security encryption techniques.
The dataset focused on text files. Encrypting Portable Network
Graphic (png), Portable Document Format (pdf), and
Document (doc) files potentially expand the scope. CC
emphasises encryption algorithms for client data protection.
Security measures can improve algorithm performance analysis
in research. Security measures include brute force attack and
chosen plaintext or ciphertext. Furthermore, it is recommended
to consider the inclusion of other encryption algorithms to
enhance the benchmarking process. One such algorithm that
could be explored is the ElGamal algorithm, which is a PHE, a
probabilistic algorithm and has multiplicative homomorphism.
By incorporating ElGamal, the benchmarking process can be
further improved allowing more comprehensive evaluation of
encryption performance, ultimately contributing to
advancements in encryption technology. Lastly, this research
focuses on the multiple iteration of model execution for
performance measurement which could be further expanded
and analyzed using the big O notation by breaking down each
operation present in an algorithm into its individual algorithmic
steps, assign complexity in each step, sum up the time
complexities and compare between the two algorithms [23].

VII. CONCLUSION

This research compares the performance of RSA and
Paillier encryption algorithms in the process of encryption and
decryption of data for CC. The algorithm which results in better
performance in terms of key generation time, encryption and
decryption time, memory utilization, encryption and decryption
throughput, file transfer time on a cloud environment can be
used to be implemented in CC data security.

Throughout the research, RSA and Paillier encryption
algorithms are built, and the result is discussed. Phases 1
through 3 of the RSA and Paillier implementation for CC
security are described. In phase 1, the dataset was refined to fit
research execution according to requirements. RSA and Paillier
attributes was then prepared with 6 text files ranging from 3 up
to 55 lines of jobs as well as 21 up to 413 bytes of dataset. Next,
RSA and Paillier encryption models, and cloud environment are
built in phase 2 to achieve the objective in this phase which is
generating models that satisfy the key generation, encryption
and decryption process of algorithms and cloud simulation that
mimics a cloud environment by determining the entities
parameters. The results of performance measurements of both
algorithms are obtained. In phase 3, the analysis of algorithms
performance is evaluated and compared.

It can be seen that RSA model outperformed Paillier model
in all key generation time, encryption and decryption time,
memory usage, throughput and file transfer time performance
measurement. By completing this research, cybersecurity
personnel can use this as a reference to identify the encryption
algorithms that can perform better in encrypting client’s or
business’s data for security in CC, especially between RSA and
Paillier.

ACKNOWLEDGMENT

We would like to express our sincere gratitude to Faculty of
Computing and Universiti Teknologi Malaysia (UTM) for
their invaluable support and resources, which played a
crucial role in the successful research.

REFERENCES

[1] P. Mell and T. Grance, "The NIST definition of cloud computing," 2011.
[2] P. Xu, C. Liu, and X.-M. Si, "Fully homomorphic encryption algorithm

based on integer polynomial ring," Jisuanji Gongcheng/ Computer
Engineering, vol. 38, no. 24, 2012.

[3] D. P. Timothy and A. K. Santra, "A hybrid cryptography algorithm for
cloud computing security," in 2017 International conference on
microelectronic devices, circuits and systems (ICMDCS), 2017: IEEE, pp.
1-5.

[4] R. S. Cordova, R. L. R. Maata, A. S. Halibas, and R. Al-Azawi,
"Comparative analysis on the performance of selected security algorithms
in cloud computing," in 2017 International Conference on Electrical and
Computing Technologies and Applications (ICECTA), 2017: IEEE, pp. 1-
4.

[5] J. Thakkar. "Types of Encryption: 5 Encryption Algorithms & How to
Choose the Right One." https://www.thesslstore.com/blog/types-of-
encryption-encryption-algorithms-how-to-choose-the-right-one/
(accessed.

[6] I. San, N. At, I. Yakut, and H. Polat, "Efficient paillier cryptoprocessor for
privacy-preserving data mining," Security and Communication Networks,
vol. 9, no. 11, pp. 1535-1546, 2016, doi: https://doi.org/10.1002/sec.1442.

64

[7] K. Munjal and R. Bhatia, "Analysing RSA and PAILLIER homomorphic
Property for security in Cloud," Procedia Computer Science, vol. 215,
pp. 240-246, 2022/01/01/ 2022, doi:
https://doi.org/10.1016/j.procs.2022.12.027.

[8] S. Bulusu and K. Sudia, "A study on cloud computing security
challenges," ed, 2013.

[9] L. Qian, Z. Luo, Y. Du, and L. Guo, "Cloud computing: An overview,"
in IEEE international conference on cloud computing, 2009: Springer,
pp. 626-631.

[10] M. A. Bamiah and S. N. Brohi, "Seven deadly threats and vulnerabilities
in cloud computing," International Journal of Advanced engineering
sciences and technologies, vol. 9, no. 1, pp. 87-90, 2011.

[11] T. Schreiber, "Session riding: A widespread vulnerability in today’s web
applications," Whitepaper, SecureNet GmbH (December 2004)
http://www. securenet. de/papers/Session_Riding. pdf, 2004.

[12] B. Grobauer, T. Walloschek, and E. Stocker, "Understanding cloud
computing vulnerabilities," IEEE Security & privacy, vol. 9, no. 2, pp.
50-57, 2010.

[13] A. Behl, "Emerging security challenges in cloud computing: An insight
to cloud security challenges and their mitigation," in 2011 World
Congress on Information and Communication Technologies, 2011:
IEEE, pp. 217-222.

[14] W. R. Claycomb and A. Nicoll, "Insider threats to cloud computing:
Directions for new research challenges," in 2012 IEEE 36th annual
computer software and applications conference, 2012: IEEE, pp. 387-
394.

[15] S. Gadia, "Cloud computing: an auditor's perspective," ISACA Journal,
vol. 6, p. 24, 2009.

[16] A. Nayyar, "Private virtual infrastructure (pvi) model for cloud
computing," International Journal of Software Engineering Research
and Practices, vol. 1, no. 1, pp. 10-14, 2011.

[17] A. T. Velte, T. J. Velte, R. C. Elsenpeter, and R. C. Elsenpeter, "Cloud
computing: a practical approach," 2010.

[18] B. Sosinsky, Cloud computing bible. John Wiley & Sons, 2010.
[19] P. You, Y. Peng, W. Liu, and S. Xue, "Security issues and solutions in

cloud computing," in 2012 32nd International Conference on
Distributed Computing Systems Workshops, 2012: IEEE, pp. 573-577.

[20] S. J. Mohammed and D. B. Taha, "Performance Evaluation of RSA,
ElGamal, and Paillier Partial Homomorphic Encryption Algorithms," in
2022 International Conference on Computer Science and Software
Engineering (CSASE), 15-17 March 2022 2022, pp. 89-94, doi:
10.1109/CSASE51777.2022.9759825.

[21] H. J. Kiratsata and M. Panchal, "A Comparative Analysis of Machine
Learning Models developed from Homomorphic Encryption based RSA
and Paillier algorithm," in 2021 5th International Conference on
Intelligent Computing and Control Systems (ICICCS), 6-8 May 2021
2021, pp. 1458-1465, doi: 10.1109/ICICCS51141.2021.9432348.

[22] N. M. S. Iswari, "Key generation algorithm design combination of RSA
and ElGamal algorithm," in 2016 8th International Conference on
Information Technology and Electrical Engineering (ICITEE), 2016:
IEEE, pp. 1-5.

[23] R. Vaz, V. Shah, A. Sawhney, and R. Deolekar, "Automated big-o
analysis of algorithms," in 2017 international conference on nascent
technologies in engineering (ICNTE), 2017: IEEE, pp. 1-6.

