
Performance Analysis of Java Object Serialization
on Windows and Linux

Roslaili Kassim

Faculty of Information Technology and Quantitative Science,
University Technology MARA,

Shah Alam, Selangor, Malaysia
60-012-277 9559

roslaili@tmsk.uitm.edu.my

ABSTRACT
Object serialization is the process of saving an object
onto a storage medium such as a file, database or to
transmit it across a network connection link in binary
form. This process of serializing an object is also
called deflating or marshalling an object. The opposite
operation, extracting a data structure from a series of
bytes, is deserialization (which is also called inflating
or unmarshalling). This paper describes the
performance analysis comparison between Java
arithmetical operations on Windows and Linux
operating system. It also evaluates the running time
performance over Java object serialization on both
operating systems. In this experiment, four Java
operations have been developed to represent different
sizes of datasets and responses. The result has shown
that Java arithmetical operations were faster on Linux
than Windows. However, Java object serialization
makes the running time of Java operations become
faster on Windows. While on Linux, Java object
serialization makes the running times of Java
operations become slower. Monolithic kernel in Linux
and hybrid kernel in Windows were the key factors
that could influence this experiment. The running time
performances of Java operations are faster on
monolithic kernel than hybrid kernel.

Categories and Subject Descriptors
[Performance]

General Terms
Experimentation

Keywords
Object serialization, runtime
comparison, monolithic kernel, hybrid
kernel, performance analysis

1. INTRODUCTION
The running time performance of an application is one
of the key factors that always being considered in the
performance benchmark. Apart from reliability,
interoperability, security and others, the fast response
time was one of the key factors in good applications.
Object serialization is one of the mechanisms to
improved runtime performance. It is a process of
saving an object onto a storage medium such as a file,
database or to transmit it across a network connection
link in binary form [1]. This process of serializing an
object is also called deflating or marshalling an object.
The opposite operation, extracting a data structure
from a series of bytes, is deserialization (which is also
called inflating or unmarshalling) [2]. As discussed in
[3], the goals for serializing Java objects are to:

• Have a simple yet extensible mechanism.
• Maintain the Java object type and safety

properties in the serialized form.
• Be extensible to support marshaling and

unmarshaling as needed for remote objects.
• Be extensible to support simple persistence

of Java objects.
• Require per class implementation only for

customization.
• Allow the object to define its external

format.

Object serialization enable data to be stored or
transferred in binary form [4]. Thus, it is expected that
object serialization mechanism could effectively
improve the runtime as it does need to do less
transformation than data that have to be transformed
into human readable character. ObjectOutputStream is
the primary output stream class that implements the
ObjectOutput interface for serializing objects.
ObjectInputStream is the primary input stream class
that implements the ObjectInput interface for
deserializing objects. These high-level streams are
each chained to a low-level stream, such as
FileInputStream or FileOutputStream. The low-level
streams handle the bytes of data. The writeObject
method saves the state of the class by writing the
individual fields to the ObjectOutputStream. The

readObject method is used to deserialize the object
from the object input stream [1].

Runtime performance on Windows and Linux might
be influenced by the computer kernel. The computer
kernel is the central component of most computer
operating systems. Its responsibilities include
managing the system's resources i.e. the
communication between hardware and software
components. Most operating systems rely on the
kernel concept [6]. The existence of a kernel is a
natural consequence of designing a computer system
as a series of abstraction layers, each relying on the
functions of layers beneath itself. The kernel, from this
viewpoint, is simply the name given to the lowest
level of abstraction that is implemented in software. A
kernel will usually provide features for low-level
scheduling of processes (dispatching), inter-process
communication, process synchronization, context
switching, manipulation of process control blocks,
interrupt handling, process creation and destruction,
and process suspension and resumption [7].

Linux kernel was based on monolithic kernel while
Windows kernel is based on hybrid kernel [8]. Hybrid
kernels are essentially a compromise between the
monolithic kernel approach and the microkernel
system. This implies running some services (such as
the network stack or the filesystem) in kernel space to
reduce the performance overhead of a traditional
microkernel, but still running kernel code (such as
device drivers) as servers in user space. In a
monolithic kernel, all OS services run along with the
main kernel thread, thus also residing in the same
memory area. This approach provides rich and
powerful hardware access [10]. The microkernel
approach consists of defining a simple abstraction
over the hardware, with a set of primitives or system
calls to implement minimal OS services such as
memory management, multitasking, and inter-process
communication [11]. Other services, including those
normally provided by the kernel such as networking,
are implemented in user-space programs referred to as
servers. Microkernel are easier to maintain than
monolithic kernels, but the large number of system
calls and context switches might slow down the
system because they typically generate more overhead
than plain function calls [8]. A microkernel allows the
implementation of the remaining part of the operating
system as a normal application program written in a
high-level language, and the use of different operating
systems on top of the same unchanged kernel. It is also
possible to dynamically switch among operating
systems and to have more than one active
simultaneously [8].

2. RELATED WORKS
The analysis of object serialization has been described
in [2] and its comparisons on Java and .Net platform
have been discussed. It is based on benchmark
technique by using profiler and the benchmarking was

done on binary and XML serialization. Another
benchmark was done in [15] but its evaluation was
based on Java.net package and XML-RPC application.
Several suggestions to optimize the performance
include to improve the reflection in object
serialization, to create new objects and improvement
in data representation and marshaling. Besides, the
compression technique was also being used in order to
reduce the size of client machine’s request and server
machine’s response.

More solutions on optimizing object serialization were
described in [16]. The running time can be decreased
by generating serialization code for each class that can
be serialized instead of using default Java serialization
mechanism which using object reflection to convert
object to byte to be sent over the wire. In addition,
objects should be created without calling user defined
properties when building object graph from the stream
to avoid side effects.

In [17], the source code of default Java serialization
mechanism has been modified to enable reusing the
existing functionality from its subclasses. Finally, the
call graph application has been used in
serialization/marshaling which represent the example
of object traversal [18]. A serializer will transform
partial graphs of objects into a stream of bytes. It is
suggests that the serialization code that will be
generated should be using minimal code or
alternatively the dynamic traversal should be arranged
so that it can be executed with minimal running time
impact.

The review of related works has shown that many
authors have discussed about the object serialization
concept. However, there is no standardized method for
the object serialization assessment where most of it
has been done on distributed environments. The
authors of [2] and [15] have analyzed the execution
performances and compare within different types of
software components. The authors [2] and [15] have
discussed the possible solutions for object serialization
problems and authors of [16] – [18] have invented
new object serialization mechanisms to improve the
execution performance of the Standard Java Object
Serialization. This work focused on performance
analysis of serialization mechanism built into .NET
platform and Java platform. This paper is organized as
follows. First, the object serialization evaluation
method has been described. Then the results will be
presented and the comparison of execution
performance on different applications will be
analyzed. Finally, the differences in term of runtime
performance will be identified for both operating
system and the conclusions for possible improvements
will be suggested.

3. SERIALIZATION EVALUATION
3.1 Method
The goal of this paper is to evaluate the object
serialization performance from the time perspective
that is how fast the serialization process will be
performed on different operating system. However,
because of it involve the sending and receiving stream
from and to the memory buffer, the size of memory
will have effects on the execution performance. Thus
in order to resolve this issue, each operations running
time have been captured by using System.nanoTime()
method. It could determine the execution performance
as well as the effect of memory buffer for these
operations. Besides, it also could provide reliable
results than profiling tool which usually involves
overhead latency.

For the purpose of this experiment, four arithmetical
operations have been developed and each of the
operations will be discussed further below.

i. IntPrime
ii. IntRandom

iii. DoubleAverage
iv. DoubleLogarithm

IntPrime was developed to represents small dataset
with small response. This operation determines
whether the given integer is prime or otherwise. It will
read the input stream from the external file, processes
it and then writes the output to the output stream. The
computation will be executed to determine whether
the input number is a prime number or not.

IntRandom was developed to represents small dataset
with big response. It reads input, n and return n
random numbers to the output stream.

DoubleAverage is to represent big dataset with small
response. It reads a list of numbers from input file,
calculates the average and send the average to the
output stream.

Big dataset with big response was represented by
DoubleLog. It reads inputs from the input file and
produces the output to the output stream. This
operation transforms each value in the input to
logarithmic value and writes all of the transformed
values to the output stream.

The objective of this experiment is to determine the
differences in object serialization performance for
different datasets and response. In Addition, the
experiment also would like to benchmark the running
time performance of Java arithmetical operations on
windows and Linux.

To measure the time required for object serialization,
each test have been repeated for 50 times and its
average value have been calculated, which is then
reported in this paper.

3.2 Software and Hardware
Equipment.
The experiment was carried out on Intel Core Duo
machine with 1.66 GHz processor and 1GB RAM.
Microsoft Windows XP Professional with Service
Pack 2 has been used for Windows evaluation and
Linux Ubuntu has been used for Linux evaluation.
Java operations were developed using JCreator LE
4.00 and were compiled using Java Development Kit
(JDK) 1.6.0_02.

4. OBJECT SERIALIZATION
ANALYSIS.
The runtime results collected in this experiment have
been compiled in the tables below. All of these tables
contain runtime results for Java application on Linux
and Windows. Each arithmetical operation has been
tested on six input data and 50 iterative executions
have been conducted for each of the input data. Then,
the mean of those 50 runtimes has been calculated and
presented in the table of results.

4.1 Small Dataset/Small Response
Analysis
IntPrime represents small request and small response.
The data values have been generated randomly and the
output have been based on each of these data values.
Table 1 shows that the runtime that is needed by Java
application execution to write the output to the console
on Linux were faster than that on Windows.

Java Runtime on

Linux
Java Runtime on

Windows

Dataset
Value

Output
to

Console
Output
to File

Output
to

Console
Output
to File

41 0.00044 0.00036 0.00068 0.00048
6334 0.00058 0.00045 0.00092 0.00047

11478 0.00028 0.00031 0.00090 0.00046
15724 0.00064 0.00032 0.00087 0.00048
18467 0.00029 0.00036 0.00087 0.00043
19169 0.00032 0.00069 0.00087 0.00043

 Table 1: Object Serialization Performance (sec) for
IntPrime

4.2 Small Dataset/Big Response
Analysis
The operation for this execution has been represented
by IntRandom. Based on this experiment, the Java
runtime execution needed less time on Linux
compared to Windows for output written to the
console. However, output written to file takes longer
runtime on Linux compared to Windows.

Java Runtime on

Linux
Java Runtime on

Windows

Dataset
Value

Output
to

Console
Output
to File

Output to
Console

Output
to File

1 0.00063 0.00023 0.00166 0.00035
20000 0.33181 0.66109 2.88009 0.51913
40000 0.63943 1.34012 5.55438 1.02406
60000 0.95494 2.00427 8.32729 1.55400
80000 1.27567 2.66835 11.11038 2.05999

100000 1.59147 3.29027 13.90043 2.59699
Table 2: Object Serialization Performance (s) for
IntRandom

4.3 Big Dataset/Small Response
Analysis
DoubleAverage read a list of double numbers and
return its average. Based on this experiment, the Java
runtime execution needed less time on Windows
compared to Linux.

Java Runtime on

Linux
Java Runtime on

Windows

Dataset
Size

Output
to

Console
Output
to File

Output
to

Console
Output
to File

1 0.00063 0.00023 0.00148 0.00049
20000 0.33181 0.66109 0.00963 0.00741
40000 0.63943 1.34012 0.01764 0.01476
60000 0.95494 2.00427 0.02528 0.02207
80000 1.27567 2.66835 0.03360 0.02952

100000 1.59147 3.29027 0.03863 0.03790
Table 3: Object Serialization Performance (s) for
DoubleAverage

4.4 Big Dataset/Big Response Analysis
This operation reads list of double numbers before
transform it into a list of log numbers and write it back
to the output console or to the output file. Based on
this experiment, the Java runtime execution needed
less time on Linux compared to Windows for output
written to the console. However, output written to file
takes longer runtime on Linux compared to Windows.

Java Runtime on

Linux
Java Runtime on

Windows

Dataset
Size

Output
to

Console
Output
to File

Output to
Console

Output
to File

1 0.00550 0.00040 0.00092 0.00048

20000 0.55359 0.71453 4.57041 0.60476

40000 1.10458 1.46031 9.06196 1.22794

60000 1.66074 2.20536 13.65480 1.82977

80000 2.22988 2.84291 18.23333 2.44221

100000 2.80685 4.09612 22.85148 3.08079

Table 4: Object Serialization Performance (s) for
DoubleLog

5. RUNTIME PERFORMANCE
COMPARISONS
In this section, the comparison of the running time
between Java runtime execution on Linux and
Windows have been performed. Figure 1, 2, 3 and 4
represent four arithmetical operations that have been
discussed earlier in this paper. It is found that on each
of the operation, object serialization to the file could
improve most of the running times on Windows than
Linux. However the Java runtime executions on Linux
show that object serialization make the runtime
become longer. The comparison will be explained
further below.

5.1 Small Request/Small Response
For this operation, it has been showed in the graph that
object serialization on Windows better than object
serialization on Linux. The improvement in runtime
execution of Java on Windows can be seen obviously
while the runtime execution for Java on Linux shows
differently.

0.0000

0.0002
0.0004

0.0006
0.0008

0.0010

41 6334 11478 15724 18467 19169

Dataset values

R
un

tim
e

(s
)

Linux Java Output to Console Linux Java Output to File

Window s Java Output to Console Window s Java Output to File
Figure 1: IntPrime Operation Performance for Java,
C# and C++.

5.2 Small Request/Big Response
In IntRandom operation, the result of its running times
was different than the previous operation. Object
serialization on Windows shows that it can improve
runtime but object serialization on Linux makes the
runtime become longer.

0

5

10

15

1 20000 40000 60000 80000 100000

Dataset Values

R
un

tim
e

(s
)

Linux Java Output to Console Linux Java Output to File

Windows Java Output to Console Windows Java Output to File
Figure 2: IntRandom Operation Performance for Java,
C# and C++.

5.3 Big Request/Small Response
In this experiment, it shows that object serialization
has successfully improve the Java execution runtime
although the improvement were very small compared
to the other operations.

0.00

0.01

0.02

0.03

0.04

0.05

1 20000 40000 60000 80000 100000

Dataset Size

Ru
nt

im
e

(s
)

Linux Java Output to Console Linux Java Output to File
Windows Java Output to Console Windows Java Output to File

Figure 3: DoubleAverage Operation Performance for
Java, C# and C++.

5.4 Big Request/Big Response
The result of the DoubleLog operation has shown that
object serialization on Windows could improve
runtime but object serialization on Linux makes no
difference in runtime.

0

5

10

15

20

25

1 20000 40000 60000 80000 100000

Datasets Size

R
un

tim
e

(s
)

Linux Java Output to Console Linux Java Output to File
Windows Java Output to Console Windows Java Output to File

Figure 4: DoubleLog Operation Performance for Java,
C# and C++.

6. DISCUSSION
In this experiment, four types of arithmetical
operations such as operations to determine prime
number, generate random number, count the average
and transform the number to its logarithm have been
evaluated. Each operation has been written in Java
using Java Development Kit (JDK). Each operation
has been written into two versions; the operation with
its output written to the output console and the
operation with its output written to the file. Object
Serialization Analysis in Section 4 and 5 has shown
that almost all operations running on Windows with its
output written to the file are better in terms of its
runtime. However, object serializations on Linux
could not improve the Java execution runtime. These
results suggest that:

i. Object serialization on Windows may
improve the running time performance
compared to object serialization on Linux

ii. Without serialization, Java operation
runtime improved tremendously if it is
running on Linux as compared to Java
runtime on Windows.

The process of serialization consists of several
important steps. In serialization, the compiler will
access the class information and gather the state of the
attributes and relations before marshal the state
information to a stream, where the in memory
representation has to be changed to the representation,

used for the serialized stream. Then the stream will be
written to the memory file, database or other location.

Based on the results that have been collected in the
experiment, the main finding was object serialization
to file storage is faster than object serialization to the
output console in most of the arithmetical operations.
The explanation over this analysis was much related to
Input/Output stream mechanism in Java. Output
stream being displayed on the output console offer
only temporary storage of data and the data is lost
when the program terminates. Files and database are
used for long time retention of large amounts of data.
However, this is true for only Java object serialization
on Windows. Experiment on Linux has produced
different result.

Data [15] maintained in files often is called persistent
data. Computers store files on secondary storage
devices such as magnetic disks, optical disks and
magnetic tapes. All data items that are being processed
by computers are reduced to combinations of 0s and
1s. The smallest data item that computers support is
called a bit (binary digit). Every character in a
computers character set such as decimal digits, letters
or special symbols is represented as patterns of bits. In
Java, each file is views as a sequential stream of bytes.

In this experiment, when an input file is opened, an
object was created and a stream will be associated
with the object. In most of the compilers, when each
of the arithmetical operations executes, the runtime
environment creates three stream objects; Standard
Input Stream Object, Standard Output Stream Object
and Standard Error Stream Object. Standard Input
Stream Object enables a program to input data from
the input file, Standard Output Stream enables a
program to store the output data to the output file and
Standard Error Stream Object enables a program to
displays error message to the screen in case of the
input file is not found. In this experiment, object
serialization is performed with byte-based streams, so
the input and output file will be binary files. Binary
files are not human readable as compared to response
to output console which is being displayed as the
characters. The process of converting binary output
into characters output will consumes time. Therefore,
object serialization to the file is faster than object
serialization to the output console because the time
taken by the computer for translating bit into
characters has been eliminated.

Intermediate representation may be output by
programming language implementations to reduce
hardware and operating system dependencies by
allowing the same code to run on different platforms.
Intermediate code may be either directly executed on a
virtual machine, or it may be further compiled into
machine code for better performance.

The runtime execution of Java operations on Linux
outperformed the runtime execution of Java operations

on Windows. This possibly cause by preemption.
Preemption in computing is the act of temporarily
interrupting a task being carried out by a computer
system, without requiring its cooperation, and with the
intention of resuming the task at a later time. Such a
change is known as a context switch. It is normally
carried out by a privileged task or part of the system
known as a preemptive scheduler, which has the
power to pre-empt, or interrupt, and later resume,
other tasks in the system.

In any given system design, some operations
performed by the system may not be preemptible. This
usually applies to Kernel functions and service
interrupts which, if not permitted to run to completion,
would tend to produce race conditions resulting in
deadlock. Barring the scheduler from preempting tasks
while they are processing kernel functions simplifies
the kernel design at the expense of system
responsiveness. The distinction between user mode
and kernel mode, which determines privilege level
within the system, may also be used to distinguish
whether a task is currently preemptible.

Some modern systems have preemptive kernels,
designed to permit tasks to be preempted even when in
kernel mode. Examples of such systems are the Linux
kernel 2.6 and some BSD systems. On the other hands,
preemptive multitasking is used to distinguish a
multitasking operating system, which permits
preemption of tasks, from a cooperative multitasking
system wherein processes or tasks must be
programmed to yield when they do not need system
resources.

In simple terms: Pre-emptive multitasking involves the
use of an interrupt mechanism which suspends the
currently executing process and invokes a scheduler to
determine which process should execute next.
Therefore all processes will get some amount of CPU
time at any given time.

At any specific time, processes can be grouped into
two categories: those that are waiting for input or
output (called "I/O bound"), and those that are fully
utilizing the CPU ("CPU bound"). In early systems,
processes would often "poll", or "busy wait" while
waiting for requested input (such as disk, keyboard or
network input). During this time, the process was not
performing useful work, but still maintained complete
control of the CPU. With the advent of interrupts and
preemptive multitasking, these I/O bound processes
could be "blocked", or put on hold, pending the arrival
of the necessary data, allowing other processes to
utilize the CPU. As the arrival of the requested data
would generate an interrupt, blocked processes could
be guaranteed a timely return to execution.

Other factor that might influenced the Java operations
performance was the type of the operating system

kernel. Windows is based on hybrid kernel of
microkernel and monolithic kernel while Linux is
based on monolithic kernel. Both kernels have the
advantages and disadvantages e.g. Linux monolithic
kernel need less time to perform Java operations than
Windows hybrid kernel but Linux monolithic kernel
doesn’t support Java Object serialization as in
Windows hybrid kernel.

7. CONCLUSION
In this paper, it is shown that the performance of
object serialization could be increased if the output of
the application is being written to the file for certain
operations. However this is true for object serialization
on Windows. Results on Linux have shown that Java
object serializations to the file take longer time than
output being sent to the console. Overall, Java
arithmetical operations are faster running on Linux
than Windows. This experiment tested the arithmetical
operations which focus on big dataset/big response,
big dataset/small response, small dataset/big response
and small dataset/small response application.

8. REFERENCES:
[1] Java Serialization

http://www.javabeginner.com/object-
serialization.htm

[2] M. Hericko, M. B. Juric, I. Rozman, S.

Beloglavec, A. Zivkovic, August 2003, Object
serialization analysis and comparison in Java
and .NET, ACM SIGPLAN Notices, Volume
38 Issue 8

[3] System Architecture

http://java.sun.com/javase/6/docs/platform/seri
alization/spec/serial-arch.html

[4] Object Serialization

http://java.sun.com/javase/6/docs/technotes/gui
des/serialization/

[5] Michael Jang, 2004, Mastering Red Hat

Enterprise Linux 3, Sybex Corporation

[6] M. Tim Jones, 2007, Anatomy of the Linux

kernel: History and architectural
decomposition
http://www.ibm.com/developerworks/linux/libr
ary/l-linux-kernel/

[7] Daniel P. Bovet, Marco Cesati, December

2002, Understanding the Linux Kernel, 2nd
Edition

[8] MS Windows NT Kernel-mode User and GDI

White Paper
http://www.microsoft.com/technet/archive/ntw
rkstn/evaluate/featfunc/kernelwp.mspx?mfr=tr
ue

[9] Dylan Griffiths, Dwight Makaroff, 2006,
Hybrid vs. Monolithic OS Kernels: A
Benchmark Comparison, IBM Centre for
Advanced Studies Conference, Proceedings of
the 2006 conference of the Center for
Advanced Studies on Collaborative research,
Toronto, Ontario, Canada, ACM New York,
NY, USA

[10] Volkmar Uhlig, 2007, The Mechanics of In-

Kernel Synchronization for a Scalable
Microkernel, ACM SIGOPS Operating
Systems Review, Volume 41, Issue 4 (July
2007), Pages: 49 – 58, ACM New York, NY,
USA

[11] M. Allman, March 2003, An evaluation of

XML-RPC, ACM SIGMETRICS Performance
Evaluation Review, Volume 30 Issue 4

[12] F. Huet, D. Caromel, H. E. Bal, Nov. 2004, A

High Performance Java Middleware with a
Real Application, Proceedings of the
ACM/IEEE SC2004 Conference

[13] B. Haumacher, M. Philippsen, 1999, More

Efficient Object Serialization, Lecture Notes In
Computer Science; Vol. 1586, Springer-Verlag

[14] K. Lieberherr, B. Patt-Shamir, D. Orleans,

2004 , Traversals of object structures:
Specification and Efficient Implementation,
ACM Transactions on Programming
Languages and Systems (TOPLAS) Volume
26 , Issue 2 (March 2004) Pages: 370 – 412

[15] J. Meyer, T. Downing, 1997, Java Virtual

Machine, O’Reilly

